SECTION 16511 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes interior lighting fixtures, lighting fixtures mounted on exterior building surfaces, lamps, ballasts, exit signs, generator transfer units, and accessories.

1.3 **DEFINITIONS**

- A. Luminaire A light fixture.
- B. BF: Ballast factor.
- C. CRI: Color-rendering index.
- D. Lumen: Measured output of lamp and luminaire, or both.
- E. GTD: Generator transfer device

1.4 SUBMITTALS

- A. Product Data: For each type of lighting fixture indicated, arranged in order of fixture designation. Include data on features, accessories, and the following:
 - 1. Dimensions of fixtures.
 - 2. Certified results of laboratory tests for fixtures and lamps for photometric performance.
 - 3. Emergency lighting unit battery and charger.
 - 4. Fluorescent and high-intensity-discharge ballasts.
 - 5. Types of lamps.
- B. Shop Drawings: Show details of nonstandard or custom fixtures. Indicate dimensions, weights, method of field assembly, components, features, and accessories.
 - 1. Wiring Diagrams: Detail wiring for fixtures and differentiate between manufacturerinstalled and field-installed wiring.
- C. Samples for Verification: For lighting fixtures designated for sample submission in the Interior Lighting Fixture Schedule.

- 1. Lamps: Specified units installed.
- 2. Ballast: 120-V model of specified ballast type.
- 3. Accessories: Cord and plug, color filters.
- D. Maintenance Data: For lighting fixtures to include in maintenance manuals specified in Division 1.

1.5 QUALITY ASSURANCE

- A. Fixtures, Emergency Lighting Units, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- B. Comply with NFPA 70.
- C. NFPA 101 Compliance: Comply with visibility and luminance requirements for exit signs.

1.6 COORDINATION

A. Fixtures, Mounting Hardware, and Trim: Coordinate layout and installation of lighting fixtures with ceiling system, framing, and other construction.

1.7 WARRANTY

- A. General Warranty: Special warranty specified in this Article shall not deprive Owner of other rights Owner may have under other provisions of the Contract Documents and shall be in addition to, and run concurrent with, other warranties made by Contractor under requirements of the Contract Documents.
- B. Special Warranties for Fluorescent Ballasts: Written warranty, executed by manufacturer agreeing to replace fluorescent ballasts that fail in materials or workmanship within specified warranty period.
 - 1. Special Warranty Period for Electronic Ballasts: Five years from date of manufacture, but not less than four years from date of Substantial Completion.
 - 2. Special Warranty Period for Electromagnetic Ballasts: Manufacturers' standard warranty, but not less than two years from date of manufacture.

1.8 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 10 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Plastic Diffusers and Lenses: 1 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Ballasts: 1 for every 100 of each type and rating installed. Furnish at least one of each type.

INTERIOR LIGHTING

4. Globes and Guards: 1 for every 20 of each type and rating installed. Furnish at least one of each type.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated for each designation in the Luminaire Schedule.

2.2 FIXTURES AND FIXTURE COMPONENTS, GENERAL

- A. Metal Parts: Free from burrs, sharp corners, and edges.
- B. Sheet Metal Components: Steel, unless otherwise indicated. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free from light leakage under operating conditions, and arranged to permit relamping without use of tools. Arrange doors, frames, lenses, diffusers, and other pieces to prevent accidental falling during relamping and when secured in operating position.
- D. Reflecting Surfaces: Minimum reflectance as follows, unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
 - 4. Laminated Silver Metallized Film: 90 percent.
- E. Lenses, Diffusers, Covers, and Globes: 100 percent virgin acrylic plastic or annealed crystal glass, unless otherwise indicated.
 - 1. Plastic: High resistance to yellowing and other changes due to aging, exposure to heat, and ultraviolet radiation.
 - 2. Lens Thickness: 0.125 inch minimum, unless greater thickness is indicated.

2.3 FLUORESCENT LAMP BALLASTS

- A. General Requirements: Unless otherwise indicated, features include the following:
 - Ballast Type: Advance Mark 5, (BF=.88) for 32 watt T-8 lamps and Advance Centium, (BF=1.00) for 24 watt T-5 HO lamps, or approved equal, electronic program rapid start unless otherwise indicated.
 - 2. Designed for type and quantity of lamps indicated at full light output.
 - 3. Total Harmonic Distortion Rating: Less than 10 percent.
 - 4. Provide a quick disconnect connector for each ballast within a luminaire.
 - 5. Sound Rating: A.

- B. Electronic Ballasts for Linear Lamps: Unless otherwise indicated, features include the following, besides those in "General Requirements" Paragraph above:
 - 1. Certified Ballast Manufacturer Certification: Indicated by label.
 - 2. Encapsulation: Without voids in potting compound.
 - 3. Parallel Lamp Circuits: Multiple lamp ballasts connected to maintain full light output on surviving lamps if one or more lamps fail.
- C. Ballasts for Compact Lamps in Recessed Fixtures: Unless otherwise indicated, additional features include the following:
 - 1. Type: Electronic or electromagnetic, fully encapsulated in potting compound.
 - 2. Power Factor: 90 percent, minimum.
 - 3. Operating Frequency: 20 kHz or higher.
 - 4. Flicker: Less than 5 percent.
 - 5. Lamp end of life detection.
 - 6. Lamp Current Crest Factor: Less than 1.7.
 - 7. Transient Protection: Comply with IEEE C62.41 for Category A1 locations.
 - 8. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.
- D. Ballasts for Compact Lamps in Nonrecessed Fixtures: Unless otherwise indicated, additional features include the following:
 - 1. Power Factor: 90 percent, minimum.
 - 2. Ballast Coil Temperature: 65 deg C, maximum.
 - 3. Transient Protection: Comply with IEEE C62.41 for Category A1 locations.
 - 4. Interference: Comply with 47 CFR, Chapter 1, Part 18, Subpart C for limitations on electromagnetic and radio-frequency interference for nonconsumer equipment.

2.4 GENERATOR TRANSFER DEVICES- (GTD)

- A. Individual Fixture Mounted GTD Generator-supplied egress lighting shall be provided by using standard fluorescent fixtures equipped with Bodine Model GTD, or equal of Nine 24, Inc., generator transfer devices. The devices shall be capable of bypassing the wall switch or low voltage relay control when normal utility power is lost and the auxiliary generator powers the lighting. The device shall consist of relay switching circuitry and fusing contained in one 8"x 1.18"x 1.18" galvanized steel case; shall sense normal power at 120 or 277 VAC, 60 Hz; shall have inputs fused to 3A maximum; shall draw 280mA and 1.6 Watts during normal sensing operation; and shall comply with the current NEC. The devices shall be UL Listed for installation inside, on top of or remote from the fixture and shall be warranted for 5 years from the date of purchase.
- B. Multiple Fixture Remote Mounted GTD Generator-supplied egress lighting shall be provided by using groups of fluorescent fixtures equipped with Bodine Model GTD20A, or equal of Nine 24, Inc., generator transfer devices. The devices shall be capable of bypassing the wall switch or low voltage relay control when normal utility power is lost and the auxiliary generator powers the lighting. The device shall consist of relay switching circuitry, a test switch, a normal power indicator light and an emergency power indicator light contained in one 9"x 6"x 3.5" enclosure; shall sense normal power at 120 or 277 VAC, 60 Hz; shall be rated for 120 thru 277 VAC, 50/60 Hz at up to 10 to 20 Amps of lighting load; shall draw 45 mA and 4.0 Watts during normal sensing operation; and shall comply with the current NEC. The devices shall be UL Listed for field instal-

lation indoors or in damp locations and shall be warranted for 5 years from the date of purchase.

2.5 EXIT SIGNS

- A. General Requirements: Comply with UL 924 the Luminaire Schedule on the drawings, and the following:
 - 1. Sign Colors and Lettering Size: Comply with authorities having jurisdiction.
- B. Internally Edge Lighted Signs as follows:
 - 1. Lamps for AC Operation: Light-emitting diodes, 70,000 hours minimum rated lamp life.
 - 2. 120/277 volt AC only for connection to emergency generator circuits.
 - 3. Single face signs shall have clear acrylic face, double faced signs shall have mirrored acrylic faces.

2.6 LAMPS

- A. Fluorescent Low Mercury, Color Temperature and Minimum Color-Rendering Index: 3500 K and 85 CRI, unless otherwise indicated. Provide Philips "Alto" T8 and T5HO TL835 phosphor lamps.
- B. Non-compact Fluorescent Lamp Life: Rated average is 25,000 hours at 12 hours per start when used on rapid-start circuits.

2.7 FIXTURE SUPPORT COMPONENTS

- A. Comply with Division 16 Section "Basic Electrical Materials and Methods," for channel- and angle-iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fitting and ceiling canopy. Finish same as fixture.
- C. Twin-Stem Hangers: Two, 1/2-inch steel tubes with single canopy arranged to mount a single fixture. Finish same as fixture.
- D. Rod Hangers: 3/16-inch- minimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to fixture and line voltage and equipped with threaded attachment, cord, and locking-type plug.
- F. Aircraft Cable Support: Use cable, anchorages, and intermediate supports recommended by fixture manufacturer. **Provide separate straight white cords for power supply.**

2.8 FINISHES

A. Fixtures: Manufacturer's standard, unless otherwise indicated.

INTERIOR LIGHTING

- 1. Paint Finish: Applied over corrosion-resistant treatment or primer, free of defects.
- 2. Metallic Finish: Corrosion resistant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixtures: Set level, plumb, and square with ceiling and walls, and secure according to manufacturer's written instructions and approved submittal materials. Install lamps in each fixture.
- B. Support for Fixtures in or on Grid-Type Suspended Ceilings: Use grid for support.
 - 1. Install a minimum of four ceiling support system rods or wires for each fixture. Locate not more than 6 inches from fixture corners.
 - 2. Support Clips: Fasten to fixtures and to ceiling grid members at or near each fixture corner.
 - 3. Fixtures of Sizes Less Than Ceiling Grid: Arrange as indicated on reflected ceiling plans or center in acoustical panel, and support fixtures independently with at least two 3/4-inch metal channels spanning and secured to ceiling tees.
- C. Suspended Fixture Support: As follows:
 - 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 2. Continuous Rows: Suspend from cable installed according to fixture manufacturer's written instructions and details on Drawings. Adjust fixture mounting heights as directed by the Architect.
 - 3. Adjust coiled cord feeds as directed by the Architect. Coiled cords shall not be bunched together and shall be stretched.
- D. Lamp Burn In: Operate ("burn in") all fluorescent lamp fixtures for 100 continuous hours prior to application of any lighting controls or dimming operation. Replace any lamps and ballasts that fail during burn in.

3.2 CONNECTIONS

- A. Ground equipment.
 - 1. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

B. Provide silicone filled wire nuts on all electrical connections to luminaries on exterior of building, and in wet or damp location areas.

3.3 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Advance Notice: Give dates and times for field tests.

INTERIOR LIGHTING

- C. Provide instruments to make and record test results.
- D. Tests: As follows:
 - 1. Verify normal operation of each fixture after installation.
 - 2. Emergency Lighting: Interrupt electrical supply to demonstrate proper operation.
 - 3. Verify normal transfer to battery source and retransfer to normal.
 - 4. Report results in writing.
- E. Malfunctioning Fixtures and Components: Replace or repair, then retest. Repeat procedure until units operate properly.
- F. Corrosive Fixtures: Replace during warranty period.

3.4 CLEANING AND ADJUSTING

- A. Clean fixtures internally and externally after installation. Use methods and materials recommended by manufacturer.
- B. Adjust aimable fixtures to provide required light intensities.

3.5 LUMINAIRE SCHEDULE: SEE DRAWINGS

END OF SECTION

SECTION 13850 - FIRE ALARM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 GENERAL AND SPECIAL CONDITIONS

- A. The Contractor shall provide all equipment, materials, tools, labor, engineering, drawings, etc. necessary for a complete fire alarm system to protect the 8th Floor, with said systems being made ready for operation in accordance with the requirements of the authorities having jurisdiction. The purpose of these specifications and drawings is to convey to the Contractor the scope of work required, all of which the Contractor is responsible to furnish, install, adjust, and make operable, including any connection to existing equipment.
- B. The Contractor shall visit the site before submitting their bid and shall examine all existing physical conditions that may be material to the performance of their work. No extra payments will be allowed to the Contractor because of extra work made necessary by their failure to do so.
- C. The Contractor shall provide all devices and equipment required by these specifications and drawings. Under no circumstances shall the Contractor delete or add any equipment or devices without the written directive of the Owner. Where there is a conflict between the drawings and the specifications, the specifications shall take precedence.

1.3 PERFORMANCE GUIDELINES

- A. Provide labor, materials, and equipment for complete and functional fire alarm and supervisory signaling system as outlined in these specifications and as shown on the contract drawings. The Contractor shall be responsible for compliance with the entire project specifications as well as the following guidelines.
- B. The following work is not intended to be all-inclusive and does not limit or define the Contractor's Scope of Work. The work includes the following:
 - 1. Connection to the point addressable EST3 FACP located in the First Floor Fire Command Center including initiating devices, audible and visual alarm indicating appliances, switches, relays, software upgrades and accessories.
 - 2. X-raying, core drilling and firestopping.
 - 3. Cutting, patching, painting.
 - 4. Removal of existing fire alarm system and indicating and notifying equipment connected to the existing Johnson Controls fire alarm system on the 8th Floor only.
 - 5. Detailed shop drawings and submittal information.
 - 6. Coordination of the work with other trades.
 - 7. On-site project supervision.
 - 8. Permits, fees, and other charges required for the work.
 - 9. Record documents.
 - 10. Operating and maintenance instructions.

- 11. Training of Owner's personnel.
- 12. System pre-testing and final testing.
- 13. Warranty of equipment and labor.

1.4 SYSTEM ABBREVIATIONS AND DEFINITIONS

- A. ADA: Americans with Disabilities Act.
- B. ADAAG: Americans with Disabilities Act Accessibility Guidelines.
- C. AFF: Above Finished Floor.
- D. AHJ: Authority Having Jurisdiction.
- E. Analog addressable: Fire alarm system technology that uses point addressable smoke and heat sensors connected to the SLC that transmit obscuration percentages and heat values to the control panel, and allows the control panel to make alarm decisions based on the information received.
- F. Approved: Unless otherwise stated, materials, equipment or submittals approved by the Owner, Architect, or Engineer.
- G. Class "A" Fire alarm circuits that are installed with "outgoing" and "return" conductors from the fire alarm panel whose performance enables the circuit to continue to function when a single "open", or ground fault occurs on the circuit. In order to be Class "A", circuits must be installed so that the outgoing and return cabling is installed in separate conduit and is routed in different paths form the fire alarm panel to increase circuit survivability. Examples of class "A" increase "A" increase "A" increase "A" increase "A" increase" in the fire alarm panel to increase "A" increase "A" increase" increase" increase "A" increase" increase "A" increase" increase "A" increase" increase "A" increase" increase" increase "A" increase" increase"
- H. Class "B" Fire alarm circuits that are installed with a single pair of outgoing cables from the fire alarm panel whose performance enables the circuit to report a trouble when a single "open" or ground fault occurs on the circuit. The panel shall be capable of distinguishing the difference between an "open" and ground fault. Examples of class "B" circuits are Class "B" SLCs, Class "B" NACs, and Class "B" IDCs.
- I. Circuit: Wire path from a group of devices or appliances to a control panel or transponder.
- J. CPU: The central processor or computer of a multiplex fire alarm or voice command control system.
- K. Engineer: Schirmer Engineering Corporation
- L. FACP: Fire Alarm Control Panel.
- M. FCC: Fire Command Center.
- N. HVAC: Heating Ventilating and Air Conditioning.

- O. IDC: Initiating Device Circuit.
- P. LED: Light Emitting Diode.
- Q. Listed: Materials or equipment included in a list published by a Nationally Recognized Testing Laboratory that maintains periodic inspection of production of listed equipment and materials.
- R. LCD: Liquid Crystal Display.
- S. Multi-Criteria Technology: Smoke detectors that use two or more detection technologies to detect smoke and fire. Such technology uses a smoke or fire signature from two or more sources to make an alarm decision.
- T. NEC : National Electric Code, 2005 Edition
- U. NFPA: National Fire Protection Association
- V. NAC: Notification Appliance Circuit.
- W. Owner: State of West Virginia
- X. RPS: Remote Power Supply.
- Y. RTU: Rooftop Unit.
- Z. SLC: Signaling Line Circuit.
- AA. Transponder: Single or multiple zone/point data collection panel used within a multiplex system.
- BB. UL: Underwriters Laboratories, Inc.
- CC. UL Listed: Materials or equipment listed by Underwriters Laboratories and included in the most recent edition of the UL Fire Protection Equipment Directory.
- DD. Zone: Combination of one or more circuits or devices in a defined building area, (e.g. 3 speaker circuits on a floor combined to form a single zone.)

1.5 RELATED WORK

- A. Materials furnished and installed by Others but wired by this Contractor:
 - 1. 8th Floor sprinkler waterflow monitoring and valve supervisory devices.

1.6 PERFORMANCE REQUIREMENTS

- A. Provide additional devices and connections to an existing EST UL listed, point addressable, multiplex fire alarm system. Approved manufacturers are listed in the Part 2 Products section. The system shall include the following:
 - 1. Connections to the FACP located in the Fire Command Center.

- 2. Smoke detectors, waterflow devices, supervisory devices, and other initiating devices; notification appliances; control relays; and monitoring relays.
- B. Systems Circuit Wiring:
 - 1. All fire alarm point addressable circuits shall be NFPA 72, Class B, supervised signaling line circuits from the FACP to the point addressable devices.
 - 2. All strobe notification appliance circuits shall be NFPA 72, Class B, electrically supervised circuits from the panel to the appliances.
 - 3. All one-way voice notification appliance circuits shall be NFPA 72, Class B, electrically supervised circuits from panel to the speakers.

1.7 SYSTEM OPERATION

- A. The point addressable fire alarm and supervisory signaling system shall perform the following functions:
 - 1. Continuous monitoring of the status of all fire alarm and supervisory signal initiating devices.
 - 2. Visible point annunciation of all fire alarm point trouble conditions at the FCR.
 - 3. Continuous monitoring of all fire alarm transponders.
 - 4. Operation of indicated control functions.
- B. Change in status of any initiating device on the system shall:
 - 1. Activate audible and visible status change indicators and display the system point number, point description, status, and message associated with the point.
 - 2. Permanently record the change in status, time, date, point description, and message associated with the point in fire alarm system historical event memory.
- C. Activation of any manual station, waterflow, smoke detector, heat detector, supervisory or other initiating device will cause the following functions to occur:
 - 1. Manual station, fire sprinkler water flow switch, or automatic smoke or heat detector (except for duct-mounted smoke detector) operation shall cause the following to occur:

a. Activate audible and visible alarm status change indicators, display the system point number, point description, and message associated with the point on the fire alarm control panel.

b. Permanently record the change in status, time, date, point description, and message associated with the alarm point in fire alarm system historical event memory.

c. Activate the audible and visible notification appliances on Floor 10.

d. Initiate a common alarm signal to the existing Johnson Controls fire alarm system. Common alarm signal shall be recognized as 10th Floor Fire Alarm.

e. Unlatch exit doors and release magnetic door holders.

f. Johnson Controls fire alarm system shall activate the audible and visible notification appliances on all other floors of the building and transmit an alarm signal to the remote monitoring center.

2. Elevator lobby smoke detector operation shall, in addition to the above operations described in 1.6.C.1, cause the following to occur:

a. Activate the elevator cab(s) firehat light.

b. Immediately recall the affected elevators to the designated level. If the alarm is on this level, recall the elevators to the alternate level.

3. Duct detector operation shall:

a. Activate audible and visible supervisory status change indicators, display the system point number, point description, and message associated with the point on the fire alarm control panel.

b. Permanently record the change in status, time, date, point description, and message associated with the supervisory point in fire alarm system historical event memory.

c. Shut down air handing unit for associated HVAC zone.

d. Initiate a common alarm signal to the existing Johnson Controls fire alarm system. Common alarm signal shall be recognized as 10th Floor Fire Alarm.

- e. Transmit a supervisory signal to the remote monitoring center.
- 4. Sprinkler valve supervisory device, standpipe waterflow switch, fire pump monitoring point, generator monitoring point, or other supervisory device activation shall:

a. Activate audible and visible supervisory status change indicators, display the system point number, point description, and message associated with the point on the fire alarm control panel.

b. Permanently record the change in status, time, date, point description, and message associated with the supervisory point in fire alarm system historical event memory.

c. Initiate a common system trouble signal to the existing Johnson Controls fire alarm system.

d. Johnson Controls fire alarm system shall transmit a system trouble alarm signal to the remote monitoring center.

- D. Removal of any device, wiring disarrangement, or system component failure shall:
 - 1. Activate audible and visible trouble status change indicators, display the system point number, point description, and message associated with the point on the fire alarm control panel.
 - 2. Permanently record the change in status, time, date, point description, and message associated with the supervisory point in fire alarm system historical event memory.
 - 3. Initiate a common system trouble signal to the existing Johnson Controls fire alarm system.
 - 4. Johnson Controls fire alarm system shall transmit a system trouble alarm signal to the remote monitoring center.

1.8 APPLICABLE STANDARDS

The following standards and guides (of the issue indicated) are hereby made a part of this work by reference thereto:

- A. International Building Code (IBC)2003.
- B. NFPA 70 National Electrical Code, 2005 edition.

- C. NFPA 72 National Fire Alarm Code, 2002 edition.
- D. UL Standard 268, Smoke Detectors for Fire Protective Signaling Systems, latest edition.
- E. UL Standard 268A, Smoke Detectors for Duct Application, latest edition.
- F. UL Standard 346, Waterflow Indicators for Fire Protective Signaling Systems, latest edition.
- G. UL Standard 464, Audible Signal Appliances, latest edition.
- H. UL Standard 864, Control Units for Fire Protective Signaling Systems, 9th edition.
- I. UL Standard 1424, Cables for Power-Limited Fire Protective Signaling Systems, latest edition.
- J. UL Standard 1481, Power Supplies for Fire Protective Signaling Systems, latest edition.
- K. UL Standard 1971, Signaling Devices for the Hearing Impaired, latest edition.
- L. Americans with Disabilities Act Accessibility Guidelines (ADAAG), 2004 edition.
- M. American National Standards (ANSI) A117.1, Accessibility Code, latest edition.

1.9 SUBMITTALS

- A. Submit the following equipment information:
 - 1. Manufacturer's data sheets with equipment to be used highlighted,
 - 2. Wiring diagrams of all equipment,
 - 3. Installation instructions for all equipment,
 - 4. Equipment dimensions,
 - 5. Equipment testing procedures,
 - 6. Equipment maintenance manuals and
 - 7. Wire data sheets.
- B. Submit the following software information:
 - 1. Proposed point numbers,
 - 2. Point descriptors,
 - 3. Complete sequence of operation with input/output matrix for all points and
 - 4. English action messages.
- C. Submit the following shop drawing information:
 - 1. Complete floor plans showing all devices with point numbers and all wire between devices.
- D. Submit the following system calculations:
 - 1. Standby battery capacity for fire alarm (identifying both the non-alarm and alarm load associated with each, and demonstrate conformance to the requirements of these specifications),
 - 2. Standby battery capacity for voice alarm (identifying both the non-alarm and alarm load associated with each, and demonstrate conformance to the requirements of these specifications),

- 3. Standby battery capacity for all remote panels (identifying both the non-alarm and alarm load associated with each, and demonstrate conformance to the requirements of these specifications),
- 4. Voltage drop calculations for each type of circuit (identifying all mathematical formulas, variables, constants, and sources of the mathematical constants),
- 5. Strobe zone/circuit loading calculations based on the UL Maximum Current method utilizing RMS current,
- 6. Normal 120 VAC fire alarm panel(s) circuit loading,.

1.10 WARRANTY

- A. This Contractor shall provide a three year written warranty against defects in material and workmanship furnished under this Contract. The costs of such warranty shall be part of the purchase price. The warranty commences when the system and installation are accepted by the Engineer and Owner.
- B. The warranty shall include all necessary material, travel, labor, and parts to replace defective components or materials at the job site. This Contractor shall commence repair of any "in warranty" defects within 8 hours of notification of such defects.
- C. The warranty shall include all necessary factory and field software required to perform the specified tasks. This item does not include software installed after system acceptance unless the defective software was installed at the direction of the system manufacturer.
- D. The Contractor shall make allowances in the warranty to cover diagnosis of system defects that may ultimately be the responsibility of others to correct. When this occurs, the Owner and other affected trades shall be notified.
- E. If the Owner experiences more than two spurious or unexplained false alarms or troubles in any 48 hour period while the system is under warranty, the Contractor shall provide the necessary labor, materials, and technical expertise to promptly correct the problem(s) without additional cost.
- F. The Contractor shall include, as part of the warranty, a test, and inspection of the entire fire alarm and voice system at least one month prior to the expiration of the construction warranty. The Contractor shall provide a written report of any deficiencies and repair all of the deficiencies. The test and report shall conform to the certification described in NFPA 72 and as required by the local authorities.

1.11 QUALITY ASSURANCE

- A. The fire alarm system manufacturer shall maintain a fully staffed branch office including application engineers, drafters, and technical service personnel within 50 miles of the project site.
- B. All supplied equipment shall be standard products of the manufacturer and regularly stocked within the manufacturer's branch office.
- C. All technical service personnel shall be regularly employed by the fire alarm system manufacturer.
- D. All electrical installation of the fire alarm system, including wire installation and terminations, shall be performed by electricians in the employ of the Electrical Contractor.
- E. Any subcontractors used to install portions of the system shall be approved by the Owner and Engineer prior to commencement of the installation.

1.12 EXISTING CONDITIONS

A. Removal of the existing 8th Floor fire alarm devices shall not adversely impact the continued proper operation of the existing system.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Provide a UL-listed, point-addressable, multiplex fire alarm control system as indicated on the bid drawings. Acceptable suppliers and the fire alarm control panel shall be limited to the following: GE/EST Model EST3
- B. Products for this project shall be of the latest design. Obsolete or discontinued models are not acceptable.
- C. All equipment supplied shall be UL listed for the required function.
- D. All fire alarm equipment shall be a product of one system manufacturer.

2.2 ALARM INITIATING DEVICES

- A. Provide point addressable manual stations where indicated. The manual stations shall be double-action type, red with white lettering, and shall be mounted in the existing locations unless otherwise noted:
 - 1. Surface mounted stations shall mount on a UL listed, red, smooth sided back box provided by the manufacturer. Semi-flush mounted stations shall mount on a standard electrical box.
 - 2. Operation of a manual station shall cause its contacts to manually lock-in until manually reset and visibly indicate that the station was activated.
 - 3. Where separate point addressable monitoring modules are used to monitor manual stations, the monitoring modules shall be located in the manual station's back box.
 - 4. The use of devices utilizing glass rods shall be prohibited.
- B. Point addressable, analog, photoelectric type smoke detectors shall be provided where indicated on the contract drawings. The smoke detectors shall be provided with integral LEDs to indicate detectors in alarm. Line transient and RFI protection shall be built into the detector.
- C. Point addressable, analog, photoelectric type duct-mounted smoke detectors shall be provided on the downstream side of air filters and ahead of any branch connections in air supply systems having a capacity of 2000 CFM, and discharge side of air-handling units with CFM rating equal or greater than 15000 CFM and serving more than one story. These smoke detectors, listed under UL Standard 268A, shall be provided with approved duct housings mounted on the exterior of the duct, and shall have perforated sampling tubes extending across the width of the duct. Each mounted concealed detector shall have a remote indicator light and test switch. Provide a relay for fan shutdown control.
- D. Point addressable heat detectors, listed under UL Standard 521, shall be provided where indicated. The heat detectors shall be rate compensated type or analog type. Temperature ratings of the heat detectors shall be appropriate for the area protected. The detectors shall have a listed spacing for coverage up to 2,500 square feet.
- E. Addressable point monitoring modules shall be used to monitor all new waterflow devices, tamper switches and similar alarm initiating device relays installed as part of the sprinkler system and fire pump installation. The interface modules shall provide Class B electrical supervision of monitored devices and be equipped with terminal strips or terminal blocks.

- F. Detectors or manual stations located in areas subject to freezing shall utilize detectors that are UL listed for temperatures below 32 degrees F. Provide a separate addressable interface module that is located in a conditioned area (with a status LED) connected to the detector using a supervised initiating device circuit.
- G. Addressable point addressable isolator modules shall be provided for isolating short circuit and earth ground faults on signaling line circuits.

2.3 SUPERVISORY INITIATING DEVICES

- A. Valve supervisory devices shall be monitored by the fire alarm system for all sprinkler control valves indicated on drawings or in design criteria. The valve supervisory devices shall be able to transmit a supervisory signal within the first two turns of the control valve handle. Wiring the sprinkler supervisory devices on the same initiating device circuit with the waterflow switch is forbidden.
- B. Valve supervisory devices shall for the fire pump test header valves shall be monitored by the fire alarm system. The valve supervisory devices shall be able to transmit a supervisory signal within the first two turns of the normally closed control valve handle.
- C. New electric driven fire pump shall be supervised per NFPA 20. The supervision shall include four points: pump or motor run, loss of power phase, power phase reversal, and emergency generator power supply. If dry contacts are not provided on the pump controller, provide accessory SPDT relays to provide required supervision.
- D. Addressable point monitoring modules shall be used to monitor all supervisory points. The monitoring modules shall provide Class B electrical supervision of monitored devices. The interface modules shall provide Class B electrical supervision of monitored devices and be equipped with terminal strips or terminal blocks.
- E. Supervisory devices located in areas subject to freezing shall use devices that are UL listed for temperatures below 32 degrees F. Provide a separate addressable interface module that is located in a conditioned area (with a status LED) connected to the device using a supervised initiating device circuit.

2.4 ALARM NOTIFICATION APPLIANCES

- A. The audible/visual notification appliances shall be EST Horn Strobe appliances. The audible portion of the appliance shall have a minimum of two (2) field selectable settings for dBA levels (90 and 95 dBA) and shall have a choice of continuous or temporal (Code 3) audible outputs.
- B. Strobe units, listed to UL Standard 1971, shall be provided where indicated on the contract drawings. The units shall be semi-flush type, wall-mounted or ceiling-mounted as indicated on the bid drawings. The units shall operate on 24 volt DC polarized power.
- C. Wall mounted strobe units shall be multi-candela appliances complete with field selectable strobe intensity settings and shall be rated per UL Standard 1971 for 15/30/75/110 candela and have a flash rate of 1 Hertz. The selector switch for selecting the candela setting shall be tamper resistant.
- D. Ceiling mounted EST Genesis speaker/strobe units shall be multi-candela appliances complete with field selectable strobe intensity settings and speaker wattage settings and shall be rated per UL Standard 1971 for 115/117 candela and have a flash rate of 1 Hertz. The selector switch for selecting the candela setting shall be tamper resistant.
- E. All strobes shall be synchronized from the FACP or RPS.
- F. The notification appliances shall provide the following minimum sound pressure levels:
 - 1. 15 dBA above ambient sound levels.

- 2. 5 dBA above maximum sound levels.
- 3. 70 dBA in public spaces and 15 dBA over ambient sound levels.
- 4. 90 dBA in mechanical areas.

2.5 CONTROL DEVICES

- A. Provide control relays/contacts for fan shutdown sequence where indicated. The control relays/contacts shall be 24-volt DC low voltage type, each with number of contacts as required and housed in metal enclosure. The contacts shall be rated as required for continuous duty.
- B. Provide control relays/contacts for elevator recall where indicated on the contract drawings or in design criteria. The control relays/contacts shall be 24-volt DC low voltage type, each with number of contacts required and housed in metal enclosure and shall interface with the existing Johnson Controls fire alarm system. The contacts shall be rated as required for continuous duty.
- C. Power supplies used for operation of control relays, contacts, step-down relays or similar applications shall be supervised by the fire alarm system for trouble conditions.
- D. Addressable point control devices shall be used to provide all required control functions. Control devices used for activation of fire suppression systems or similar releasing equipment shall be listed for Releasing Service. Control relays connected to unsupervised circuits shall be located within 3 feet of the controlled device.
- E. Addressable relays located in areas subject to freezing shall utilize conventional relays that are UL listed for temperatures below 32 degrees F. Provide a separate addressable interface module that is located in a conditioned area (with a status LED) connected to the conventional relay using a supervised initiating device circuit.

2.6 REMOTE POWER SUPPLY (RPS)

- A. Remote power supply panel (RPS) shall be provided as indicated on the contract drawings and include the following:
 - 1. A minimum of four notification appliance circuits rated 3.0 amps maximum for any one circuit.
 - 2. Circuits configured as either Class B (Style Y) or Class A (Style Z).
 - 3. Strobe synchronization modules.
 - 4. Integral power supply with battery charger and standby batteries. Batteries shall be sized to meet the standby requirements of the FACP.
 - 5. Point addressable control and monitoring modules for activation and supervision by the FACP. Trouble conditions for each power supply shall be supervised by a separate point addressable monitor module that is independent from the associated trigger circuit or control module. Power supplies and modules that do not provide individual circuit troubles at the main control panel are not acceptable.

2.7 INSTALLATION MATERIAL

- A. Wire shall be UL listed for use in fire alarm signaling systems or as required by NFPA 70, Article 760. All wire shall be solid conductors of copper, minimum size No. 18 AWG and insulation rated at 600 volts.
 - 1. Wire used for 120 VAC power circuits shall be minimum size of 12 AWG stranded copper conductors, with THHN insulation.

- Wire used for 24 VDC power circuits and strobe circuits shall be minimum size of 14 AWG stranded or solid copper conductors, with TFN insulation and UL listed for fire alarm use and labeled PLFA.
- 3. Wire used for one-way voice speakers shall be minimum size of 18 AWG solid copper conductors; UL listed for fire alarm use and labeled PLFA.
- 4. Wire used for point addressable, signaling line circuits, and Network transmission systems shall be minimum size of 18 AWG solid copper conductor, UL listed for fire alarm system use and labeled PLFA.
- 5. Wire shall be UL listed for use in fire alarm signaling systems or as required by NFPA 70, Article 760. All wire shall be a solid conductor of copper, minimum size of No. 18 AWG and insulation rated at 600 volts.
- 6. All wire shall meet the requirements and recommendations of the system manufacturer.
- B. All conduits, junction boxes, pull boxes and fittings shall be UL listed.
- C. Terminal Cabinets:
 - 1. FTC shall be UL listed for use in electrical wiring systems.
 - 2. Manufactured with 16 gauge cold roll steel with factory powder coated painted red finish and minimum size of 12 inches wide by 12 inches high by 4 inches deep with hinged lockable cover.
 - 3. Equipped with factory mounted terminal strips designed to accept 12 gauge wires and rated at 20 amps maximum.
 - 4. Cover shall include permanent white lettering "FIRE ALARM TERMINAL CABINET".

PART 3 - EXECUTION

3.1 INSTALLATION

- A. The Fire Alarm System Supplier shall provide on-the-job supervision for the proper installation of their devices in cooperation with, or as may be required by, other trades. This supervision shall include, but not be limited to, the following:
 - 1. Provide specific on-site instructions to others on mounting and installation of each type of device by physically observing the mounting of one or more of each type of device, as required, to assure that the installer is properly instructed in the work.
 - 2. Provide other supervision as required by the trades to properly perform alarm installation work.
 - 3. Perform a complete test of the system, certifying that all devices have been activated and that the devices and systems perform in accordance with the requirements of these specifications and the applicable codes of the State of West Virginia.
 - 4. Install, test, trouble-shoot, and correct all system software provided under these specifications. This includes, but is not limited to, actual keyboard entry, reprogramming required to meet these specifications and any other task associated with the system software.

- 5. Submit layout drawings and detailed wiring diagrams to the Architect and Engineer for review prior to submission to the State of West Virginia. Upon completed review by the Engineer, Contractor shall submit drawings and diagrams to the State of West Virginia authorities for permit review and approval.
- B. The Fire Alarm Contractor shall provide all material and labor to provide a complete and functional system that operates in accordance with the requirements of these specifications. This shall include, but not be limited to, the following:
 - 1. Conduit, raceway, and wiring systems as indicated herein.
 - a. All wiring shall be concealed. No wiring shall be visible in any public spaces. There are no exceptions to this requirement.
 - Install the fire alarm system in conduit or approved raceway, parallel to existing building structure. Any raceway must be low profile and aesthetically pleasing and samples shall be submitted to the Architect and Engineer for review and approval.
 Any raceway used in exposed areas shall be specifically approved by the Architect prior to installation.
 - c. Contractor may reuse existing conduits for initiating device and notification appliance circuits where provided. All risers shall be new conduit.
 - d. All fire alarm circuits shall be new wire and shall be UL listed for use in fire alarm systems.
 - 2. Power Supplies:
 - a. Dedicated primary 120 VAC power riser installed in dedicated conduit extending from the nearest emergency power panel adjacent to the new FACP located in the Fire Command Center and to the new RPS on 8th Floor.
 - b. Dedicated lockable breakers shall be provided for power circuits of the fire alarm system.
 - c. The 120 VAC primary power circuit shall be sized to power three RPS with no RTP circuit loaded beyond 80% of the circuit's rated capacity.
 - d. Design load connected to any power supply/standby battery shall not exceed 80% of its rated capacity.
 - 3. Conduit:
 - a. New conduit shall be 3/4-inch minimum size and be EMT, Intermediate steel, or Rigid Steel type except where otherwise required by local code or these specifications. All conduit shall be appropriately sized to comply with the NEC. Metal clad cable is permitted in concealed spaces for horizontal fire alarm branch circuits and connections to devices and fixtures.
 - b. All EMT conduit fittings shall be compression type. All rigid conduit fittings shall be threaded with plastic inserts.
 - c. Flexible conduit and associated junction boxes connecting sprinkler waterflow and supervisory switches shall be water resistant.
 - 4. Junction Boxes:
 - a. Sectional boxes shall not be used.
 - b. Each box shall be large enough to accommodate required splices and conduit in accordance with the NFPA 70.

- c. All box covers shall be painted red.
 - 5. Field Terminal Cabinets (FTC):
- a. UL listed terminal strips shall be provided for all wiring splices in terminal boxes. All terminals shall be permanently labeled. The use of wire nuts to make wiring splices in the FTC is strictly prohibited.
 - 6. Patching of all walls, floors, and ceilings that are penetrated or damaged during construction and returning the surface to a condition matching existing adjacent surfaces.
- a. All slab penetrations shall be completely sealed and made watertight.
- b. Restore all firewalls to rated conditions.
 - 7. X-raying or sonar scanning of floor areas prior to core drilling.
 - 8. All coring and sleeving required.
- C. Mounting:
 - 1. Manual stations in finished areas shall be mounted in flush boxes unless otherwise noted. Manual stations located in unfinished areas shall be surface mounted on back boxes provided by the device manufacturer. All manual stations shall be mounted at 48 inches AFF as measured to the center of the pull lever.
 - 2. Wall mounted horns shall be mounted a minimum of 96 inches AFF. Where combination horn/strobes are provided, they shall be mounted at 96 inches AFF.
 - 3. Public area horns and strobe lights shall be flush mounted in ceilings or walls as noted on the contract drawings.
 - 4. All alarm devices, horns, and strobes shall be mounted in accordance with the manufacturer's installation instructions and use the manufacturers suggested mounting box.
 - 5. Point addressable monitor modules and control modules shall be securely mounted in back boxes or mounted on rails within a larger enclosure. The use of wire nuts to make connections to these modules is strictly prohibited.
 - 6. Panels including FACP shall be mounted so that no control switch or visible indicator will be installed less than 36 inches AFF or greater than 72 inches AFF. RPS and FTC shall be installed 72 inches AFF.
 - 7. Locations in ceilings or walls where devices are removed shall be patched and finished in accordance with specification section "Painting, Patching and Firestopping". Existing speaker covers shall remain only in the residential units.
 - 8. End of Line (EOL) Resistors shall be mounted in accessible areas. Mounting of EOLs in tenant spaces not accessible to the landlord shall not be allowed.
- D. Device Spacing:
 - 1. All speakers whether combined with strobes or not shall be spaced as shown on the contract drawings and in accordance with NFPA 72.
 - 2. Corridor strobes shall be spaced not greater than 100 feet on center.
 - 3. Spot type smoke detectors installed in rooms shall be spaced not greater than 21 feet from any adjacent wall.

- E. Strobe Circuit Design: Strobe circuit design, except for specified spaces, shall be based on total current draw using 110 candela strobes. Strobe current rating shall be based on 0.210 amps at 24 VRMS per appliance. No strobe circuit shall be loaded beyond 90% of rated capacity. Strobe circuits shall be designed so that not more than one floor shall be on the same notification zone.
- F. The existing building fire alarm system shall remain operational during the installation of the new fire alarm system. As new equipment is installed, it shall be labeled "NOT IN SERVICE" until the new equipment is accepted. Upon acceptance of the new fire alarm system and placement into service, all new equipment shall have tags removed and the existing equipment shall be tagged "NOT IN SERVICE" until removed from the building.

3.2 DEMOLITION

- A. Existing 10th Floor fire alarm system devices, equipment and wiring shall not be reused as part of the new system installation shall be removed.
- B. Removed equipment shall be properly disposed of by the Fire Alarm Contractor.

3.3 TESTS/FIELD QUALITY CONTROL

- A. The final alarm acceptance test shall be coordinated with Architect, Engineer and Owner. Prior to the acceptance test, the Contractor shall conduct a full pre-test of the system to verify proper operation. A letter certifying that the installation is complete and operational shall be forwarded to the Architect and Engineer.
- B. One week prior to the start of acceptance testing, the Contractor shall provide Engineer with a printout of the system point numbers, point descriptions, English messages, event control description, and sequence of system operation.
- C. One week prior to the start of the acceptance test, the contractor shall measure all circuits and record resistance, stray voltage, and other items required by NFPA 72. (Measurement records shall be issued to Engineer at the start of the test.)
- D. During the system testing, the Contractor shall provide at the site a wide carriage printer connected to the FACP to document system testing. The Contractor shall provide a copy of the printed record to the Engineer.
- E. The Contractor shall provide all materials, equipment, coordination, and personnel necessary to perform and document all required tests. All test equipment shall be subject to approval by the Owner and Engineer.

3.4 TRAINING

- A. Provide training of operating personnel in proper system operation and required user maintenance procedures.
- B. Three operating manuals containing illustrations, description of each detection device, operation of control panels, switches, pilot lights, etc.
- C. Two separate 4-hour training sessions for operating personnel. These sessions are to cover proper operating and response procedures. These instructions shall be sufficient to enable a previously untrained person to properly operate the system.
- D. Provide three software manuals containing a listing of all points, event programs, basic programming and instructions, and software trouble-shooting information.

3.5 SPARE PARTS

A. All spare parts shall be directly interchangeable with the corresponding components of the installed systems.

- B. The Fire Alarm Contractor shall furnish a listing, in duplicate, of all spare parts and accessories that the manufacturer recommends to be stocked for proper maintenance of system.
- C. The Fire Alarm Contractor shall furnish the following spare parts:
 - 1. One point addressable manual stations.
 - 2. Two point addressable spot smoke detectors and bases.
 - 3. One point addressable duct smoke detectors with housings.
 - 4. Two point addressable monitoring modules.
 - 5. Two electronic horns of each type and color.
 - 6. Two multi-candela strobe lights and two multi-candela speaker/strobes.
 - 7. Two point addressable control modules.
 - 8. Three sets of keys for each type of lock.

END OF SECTION

SECTION 15050 - BASIC MECHANICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Coordination with related work specified in other Divisions.
 - 2. Coordination drawings specific to Division 15 requirements.
 - 3. Record document submittals specific to Division 15 requirements.
 - 4. Piping materials and installation instructions common to most piping systems.
 - 5. Transition fittings.
 - 6. Dielectric fittings.
 - 7. Mechanical sleeve seals.
 - 8. Sleeves.
 - 9. Escutcheons.
 - 10. Grout.
 - 11. Cutting and patching specific to Division 15 requirements.
 - 12. Maintaining utility services.
 - 13. Equipment installation requirements common to equipment sections.
 - 14. Painting and finishing.
 - 15. Concrete bases.
 - 16. Supports and anchorages.
- B. Related Documents: All general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections apply to Work of all Division 15 Sections. Specification Divisions and Sections relating closely to the Work of Division 15 Sections include the following:
 - 1. Division 1 General Requirements:
 - 2. Section 05500 Metal Fabrications for steel framing and supports for mechanical equipment.
 - 3. Section 07841 Through-Penetration Firestop Systems for firestopping penetrations though fire-rated floors, roofs, walls and partitions.
 - 4. Section 07920 Joint Sealants for requirements for joint sealants between equipment and fixtures and adjoining walls, floors or counters.
 - 5. Section 09912 Painting for painting exposed bare and covered pipes and ducts, hangers, exposed steel and iron work, and primed metal surfaces of mechanical and electrical equipment.
 - 6. Section 16050 Basic Electrical Materials and Methods and related Division 16 Sections for electrical connections for mechanical equipment, including disconnect switches, motors, starters and spare breakers in electrical panels for control equipment.

1.2 DEFINITIONS

A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.

- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. Plenum: A plenum is an enclosed portion of the building structure that is designed to allow air movement, and thereby serve as part of an air distribution system. Supply, return, exhaust, relief and ventilation air plenums shall be limited to areas above a ceiling or below the floor. Plenums shall be limited to one fire area. Fuel-fired appliances shall not be installed within a plenum.
- G. The following are industry abbreviations for plastic materials:
 - 1. ABS: Acrylonitrile-butadiene-styrene plastic.
 - 2. CPVC: Chlorinated polyvinyl chloride plastic.
 - 3. PE: Polyethylene plastic.
 - 4. PVC: Polyvinyl chloride plastic.
- H. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-propylene-diene terpolymer rubber.
 - 2. NBR: Acrylonitrile-butadiene rubber.

1.3 SUBMITTALS

- A. Product Data: For the following:
 - 1. Transition fittings.
 - 2. Dielectric fittings.
 - 3. Mechanical sleeve seals.
 - 4. Escutcheons.
- B. Welding certificates.
- C. Shop Drawings: Detail fabrication and installation for metal and wood supports and anchorage for mechanical materials and equipment.
- D. Coordination Drawings: Comply with procedural requirements specified in Section 01041 Coordination.
 - 1. Mechanical Access Drawings: For access panel and door locations. Reproduce architectural reflected ceiling plans and note proposed locations of ceiling and wall access doors. Where possible group together work of Division 15 and 16 at a single location. Comply with procedural requirements specified in Section 01041 – Coordination.

- 2. Field Construction Drawings: Sheet metal installation drawing shall be used to coordinate all work of separate Sections. Locate pipe work, conduits, raceways, equipment, etc. in plan and elevation to coordinate concealed space clearances.
- 3. Conflicts not resolved in field shall be submitted on minimum ¼-inch per foot scale drawing to Architect. Drawing to describe full extent of conflict.
- E. Record Documents: Coordinate specific requirements listed below with general provisions for record documents specified in Section 01700 Contract Closeout.
 - 1. Maintain a record set of drawings on site and specifically note the following:
 - a. Plumbing and Hydronic Piping:
 - 1) Underground mains and branch locations measured from building columns or walls and dimensioned on record drawings.
 - 2) Underground mains and branch inverts or depth of piping below floor slab.
 - 3) Main and branch distribution piping service shut-off valves and valve tag number.
 - 4) Main and branch distribution piping deviations in locations shown on Contract Documents. Specifically identify each service with the proper Drawing symbol and dimension from building columns or walls.
 - 5) Specialty items located behind finished surfaces and accessible through access doors. Where item is not accessible, provide dimensions from identifying walls and elevations above finish floor.
 - 6) Pipe anchor points attached to roof support steel. Dimension from building columns or walls.
 - b. Ductwork and Ductwork Accessories:
 - 1) Shop fabrication drawings noting coordination with work of other Sections, to be cross-referenced by drawing identification number and contract drawing number.
 - 2) Roof penetration locations for fans and other equipment.
 - Ductwork accessories to be identified by highlighting where accessory requires service as follows:
 - a) Fire dampers and access doors to fusible links.
 - b) Relief or gravity backdraft dampers.
 - c) Motorized control dampers.
 - d) Automatic control system sensors.
 - e) Fan or equipment with motor of control valve.
 - c. Equipment: Installed location if revised from Contract Drawings and not exposed to view, dimensioned from building columns or walls.
 - 2. Submit record set of Drawings and Specifications for coordination with a single master set of "As-Built" Contract Documents.

1.4 QUALITY ASSURANCE

- A. Products by Listed Manufacturers but not Scheduled: Equipment of higher or lower electrical characteristics, physical dimensions, capacities, and ratings than scheduled products may be furnished subject to the following conditions:
 - 1. Deviations from scheduled product are noted and highlighted in submittal of product data and shop drawings.
 - 2. No exception is taken by Architect to submitted product through standard submittal process.
 - 3. Connecting mechanical and electrical services, circuit breakers, conduit, motors, bases, and equipment spaces are increased or reduced to accommodate deviations from scheduled product. These modifications shall be coordinated with affected trades at no additional cost to the owner. If minimum energy ratings or efficiencies of equipment are specified, equipment must meet design and commissioning requirements.
- B. Materials exposed within plenums. Materials exposed within plenums shall be noncombustible or shall have a flame spread index of not more than 25 and a smoke developed index of not more than 50 when tested in accordance with ASTM E 84.
- C. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code-Steel."
- D. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

1.5 SEQUENCING AND COORDINATION

- A. Provide information required for development of Contractor's Construction Schedule specified in Division 1.
- B. Coordinate mechanical equipment installation with other building components. Coordinate concrete bases, thrust blocks, structural supports, roof curbs and openings, louvers etc.
- C. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction to allow for mechanical installations.
- D. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components, as they are constructed.
- E. Coordinate roof penetrations, curbs, framed openings, etc. for installation of equipment, curb types and flashing.
- F. Sequence, coordinate, and integrate installations of mechanical materials and equipment for efficient flow of the Work. Coordinate installation of large equipment requiring positioning before closing in building.
- G. Coordinate connection of mechanical systems with exterior underground services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies.

- H. Coordinate requirements for access panels and doors if mechanical items requiring access are concealed behind finished surfaces.
- I. Coordinate installation of identifying devices after completing covering and painting, if devices are applied to surfaces. Install identifying devices before installing acoustical ceilings and similar concealment.
- J. Coordinate installation work to maintain the following:
 - 1. Planned piping layout, including valve and specialty locations and valve-stem movement.
 - 2. Planned ductwork layout, including maintenance deviance to dampers, equipment and access through ceiling.
 - 3. Planned fire protection including zone valves, flow switches, damper switches, equipment and access through ceilings.
 - 4. Clearances for installing and maintaining insulation.
 - 5. Clearances for servicing and maintaining equipment, accessories, and specialties, including space for disassembly required for periodic maintenance.
 - 6. Equipment and accessory service connections and support details.
 - 7. Exterior wall and foundation penetrations.
 - 8. Fire-rated wall and floor penetrations.
 - 9. Sizes and location of required concrete pads and bases.
 - 10. Scheduling, sequencing, movement, and positioning of large equipment into building during construction.
 - 11. Floor plans, elevations, and details to indicate penetrations in floors, walls, and ceilings and their relationship to other penetrations and installations.
 - 12. Reflected ceiling plans to coordinate and integrate installation of air outlets and inlets, light fixtures, communication system components, sprinklers, and other ceiling-mounted items.
 - a. Access door locations to gang together valve dampers, etc at a single location for service.
 - 13. Roof penetrations, dimensions, weights, curbing and blocking, vents, roof drains, piping curbs on roof, etc.
 - 14. Site utilities and under floor services, inverts and clearances to maintain pipe slope.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection: 1. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified.

2.2 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 15 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.3 JOINING MATERIALS

- A. Refer to individual Division 15 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- H. Solvent Cements for Joining Plastic Piping:
 - 1. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.

2.4 TRANSITION FITTINGS

- A. AWWA Transition Couplings: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Dresser Industries, Inc.; DMD Div.
 - c. Ford Meter Box Company, Incorporated (The); Pipe Products Div.
 - d. JCM Industries.
 - e. Smith-Blair, Inc.
 - f. Viking Johnson.
 - 2. Underground Piping NPS 1-1/2 and Smaller: Manufactured fitting or coupling.
 - 3. Underground Piping NPS 2 and Larger: AWWA C219, metal sleeve-type coupling.
 - 4. Aboveground Pressure Piping: Pipe fitting.
- B. Plastic-to-Metal Transition Fittings: PVC one-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Eslon Thermoplastics.
- C. Plastic-to-Metal Transition Adaptors: One-piece fitting with manufacturer's SDR 11 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint end.
 - 1. Manufacturers:
 - a. Thompson Plastics, Inc.
- D. Plastic-to-Metal Transition Unions: MSS SP-107, PVC four-part union. Include brass end, solvent-cement-joint end, rubber O-ring, and union nut.
 - 1. Manufacturers:
 - a. NIBCO INC.
 - b. NIBCO, Inc.; Chemtrol Div.
- E. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.
 - 1. Manufacturers:
 - a. Cascade Waterworks Mfg. Co.
 - b. Fernco, Inc.
 - c. Mission Rubber Company.
 - d. Plastic Oddities, Inc.

2.5 DIELECTRIC FITTINGS

BASIC MECHANICAL MATERIALS AND METHODS 15050 - 7

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solderjoint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 - 1. Manufacturers:
 - a. Eclipse, Inc.
 - b. Watts Industries, Inc.; Water Products Div.
 - c. Zurn Industries, Inc.; Wilkins Div.
- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, fullface- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig minimum working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.

- c. Sioux Chief Manufacturing Co., Inc.
- d. Victaulic Co. of America.

2.6 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Metraflex Co.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Plastic. Include two for each sealing element.
 - 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating or Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.7 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.8 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chrome-plated finish.
- C. One-Piece, Cast-Brass Type: With set screw.

- 1. Finish: Polished chrome-plated and rough brass.
- D. Split-Casting, Cast-Brass Type: With concealed hinge and set screw.
 - 1. Finish: Polished chrome-plated and rough brass.
- E. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish.
- F. One-Piece, Floor-Plate Type: Cast-iron floor plate.

2.9 GROUT

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 15 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install all piping at right angles or parallel to building walls. Diagonal runs are prohibited.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at specified slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.

15050 - 10

- K. Select system components with pressure rating equal to or greater than system operating pressure.
- L. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished chrome-plated finish.
 - c. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - d. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, castbrass type with polished chrome-plated finish.
 - e. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with hinge and set screw or spring clips.
 - f. Bare Piping in Equipment Rooms: One-piece, cast-brass type.
 - g. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floor-plate type.
- M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend cast-iron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsum-board partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 7 Section "Sheet Metal Flashing and Trim" for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 7 Section "Joint Sealants" for materials and installation.
- N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.

- 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 7 Section "Through-Penetration Firestop Systems" for materials.
- Q. Verify final equipment locations for roughing-in.
- R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements.

3.2 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals.
 - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.3 DUCTWORK SYSTEMS COMMON REQUIREMENTS

- A. General: Division 15 Ductwork sections specify unique installation requirements.
- B. General locations and arrangements: Drawing plans and schematics indicated general locations and arrangements of ductwork. Transition ductwork, to equivalent size, rise and drop, raises or lower to accommodate space and slope of other utilities pipes and conduits. Install ductwork as indicated, unless deviations to layout are approved on coordination drawings.
- C. Install finished surface frames on walls roofs, ceilings, etc. where ductwork penetrates spaces exposed to view.
 - 1. Prime coat frames ready for field painting at walls and non-accessible ceilings.
 - 2. Match enamel paint for ceiling tee bars where penetrating lay-in ceiling.

D. Install sleeves for ductwork penetrating walls. Size sleeves for continuous insulation at non-fire rated walls, roofs, and floors. Omit sleeves at fire and smoke walls where sleeve are a portion of a damper assembly.

3.4 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces.
- C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.5 PAINTING

- A. Painting of mechanical systems, equipment, and components is specified in Division 9.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.6 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions.
 - 1. Construct concrete bases not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Install dowel rods on 18inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
 - 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 3.

3.7 ERECTION OF METAL SUPPORTS AND ANCHORAGES

A. Refer to Division 5 Section "Metal Fabrications" for structural steel.

- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.8 ERECTION OF WOOD SUPPORTS AND ANCHORAGES

- A. Cut, fit, and place wood grounds, nailers, blocking, and anchorages to support, and anchor mechanical materials and equipment.
- B. Select fastener sizes that will not penetrate members if opposite side will be exposed to view or will receive finish materials. Tighten connections between members. Install fasteners without splitting wood members.
- C. Attach to substrates as required to support applied loads.

3.9 GROUTING

- A. Mix and install grout for mechanical equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

3.10 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces necessary for mechanical installations.
 - 1. Perform cutting by skilled mechanics of trades involved.
 - 2. Size of cut opening shall accommodate minimum clearances for new work.
- B. Coordinate patching and repair of cut surfaces with requirements of Division 1 Section "Cutting and Patching."

3.11 CONNECTIONS TO EQUIPMENT PROVIDED UNDER OTHER DIVISIONS

15050 - 14

A. Drawings indicate connection size and service. Coordinate with equipment installation drawings and provide all accessories and final connections as required.

3.12 MAINTAINING SERVICES

A. Coordinate maintenance of utility services with requirements of Division 1 Section "Temporary Facilities and Controls."

END OF SECTION

SECTION 15060 - HANGERS AND SUPPORTS

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes hangers and supports for mechanical system piping and equipment.
- B. Related Sections include the following:
 - 1. Division 5 Section "Metal Fabrications" for materials for attaching hangers and supports to building structure.
 - 2. Division 13 Sections on fire-suppression piping for fire-suppression pipe hangers.
 - 3. Division 15 Section "Basic Mechanical Materials and Methods" for Welding.
 - 4. Division 15 Section "Vibration Controls for HVAC Piping and Equipment."

1.2 DEFINITIONS

- A. MSS: Manufacturers Standardization Society for the Valve and Fittings Industry.
- B. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.3 **PERFORMANCE REQUIREMENTS**

- A. Design channel support systems for piping to support multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.
- B. Design heavy-duty steel trapezes for piping to support multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.

1.4 SUBMITTALS

A. Product Data: For each type of pipe hanger, channel support system component, and thermalhanger shield insert indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Pipe Hangers:

HANGERS AND SUPPORTS

- a. B-Line Systems, Inc.
- b. Grinnell Corp.
- c. PHD Manufacturing, Inc.
- 2. Channel Support Systems:
 - a. B-Line Systems, Inc.
 - b. Grinnell Corp.; Power-Strut Unit.
 - c. Thomas & Betts Corp.
 - d. Unistrut Corp.
- 3. Thermal-Hanger Shield Inserts:
 - a. Michigan Hanger Co., Inc.
 - b. Pipe Shields, Inc.
 - c. Rilco Manufacturing Co., Inc.
- 4. Powder-Actuated Fastener Systems:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.

2.2 MANUFACTURED UNITS

- A. Pipe Hangers, Supports, and Components: MSS SP-58, factory-fabricated components. Refer to "Hanger and Support Applications" Article in Part 3 for where to use specific hanger and support types.
 - 1. Galvanized, Metallic Coatings: For piping and equipment that will not have field-applied finish.
 - 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- B. Channel Support Systems: MFMA-2, factory-fabricated components for field assembly.
 - 1. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.
 - 2. Nonmetallic Coatings: On attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- C. Thermal-Hanger Shield Inserts: 100-psi minimum compressive-strength insulation, encased in sheet metal shield.
 - 1. Material for Cold Piping: Water-repellent-treated, ASTM C 533, Type I calcium silicate with vapor barrier.
 - 2. Material for Hot Piping: Water-repellent-treated, ASTM C 533, Type I calcium silicate.
 - 3. For Trapeze or Clamped System: Insert and shield cover entire circumference of pipe.
 - 4. For Clevis or Band Hanger: Insert and shield cover lower 180 degrees of pipe.
 - 5. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.3 MISCELLANEOUS MATERIALS

- A. Powder-Actuated Drive-Pin Fasteners: Powder-actuated-type, drive-pin attachments with pullout and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Anchor Fasteners: Insert-type attachments with pull-out and shear capacities appropriate for supported loads and building materials where used.
- C. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars, black and galvanized.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger requirements are specified in Sections specifying equipment and systems.
- B. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Specification Sections.
- C. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:
 - 1. Adjustable Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated stationary pipes, NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes, NPS 1/2 to NPS 24, if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes, NPS 1/2 to NPS 4, to allow offcenter closure for hanger installation before pipe erection.
 - 6. Adjustable Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated stationary pipes, NPS 3/4 to NPS 8.
 - 7. Adjustable Steel Band Hangers (MSS Type 7): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 8.
 - 9. Adjustable Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated stationary pipes, NPS 1/2 to NPS 2.
 - 10. Split Pipe-Ring with or without Turnbuckle-Adjustment Hangers (MSS Type 11): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 8.
 - 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated stationary pipes, NPS 3/8 to NPS 3.
 - 12. U-Bolts (MSS Type 24): For support of heavy pipe, NPS 1/2 to NPS 30.
 - 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 14. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.
 - 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange and with U-bolt to retain pipe.

- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes, NPS 2-1/2 to NPS 36, if vertical adjustment is required, with steel pipe base stanchion support and cast-iron floor flange.
- D. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.
- E. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- F. Building Attachments: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
 - 11. Malleable Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
 - 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
 - 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where head room is limited.
- G. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Specification Sections, install the following types:
 - 1. Steel Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe, 360-degree insert of highdensity, 100-psi minimum compressive-strength, water-repellent-treated calcium silicate or cellular-glass pipe insulation, same thickness as adjoining insulation with vapor barrier and encased in 360-degree sheet metal shield.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Pipe Hanger and Support Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from building structure.
- B. Channel Support System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled channel systems.
 - 1. Field assemble and install according to manufacturer's written instructions.
- C. Heavy-Duty Steel Trapeze Installation: Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated, heavy-duty trapezes.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, steel shapes selected for loads being supported. Weld steel according to AWS D-1.1.
- D. Install building attachments within concrete slabs or attach to structural steel. Space attachments within maximum piping span length indicated in MSS SP-69. Install additional attachments at concentrated loads, including valves, flanges, guides, strainers, and expansion joints, and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- E. Install powder-actuated drive-pin fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- F. Install mechanical-anchor fasteners in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- G. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

- H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- J. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.9, "Building Services Piping," is not exceeded.
- K. Insulated Piping: Comply with the following:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Piping Operating below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - c. Do not exceed pipe stress limits according to ASME B31.9.
 - 2. Install MSS SP-58, Type 39 protection saddles, if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40 protective shields on cold piping with vapor barrier. Shields shall span arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 - d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 - e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.
 - 5. Pipes NPS 8 and Larger: Include wood inserts.
 - 6. Insert Material: Length at least as long as protective shield.
 - 7. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure above or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

3.4 METAL FABRICATION

A. Cut, drill, and fit miscellaneous metal fabrications for heavy-duty steel trapezes and equipment supports.

B. Fit exposed connections together to form hairline joints. Field-weld connections that cannot be shop-welded because of shipping size limitations.

3.5 ADJUSTING

A. Hanger Adjustment: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

END OF SECTION

SECTION 15074 - VIBRATION CONTROLS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Isolation pads.
 - 2. Isolation mounts.
 - 3. Freestanding spring isolators.
 - 4. Spring hangers.
 - 5. Inertia vibration isolation equipment bases.

1.3 **DEFINITIONS**

A. IBC: International Building Code.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
- B. Welding certificates.
- C. Field quality-control test reports.

1.5 QUALITY ASSURANCE

A. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

PART 2 - PRODUCTS

2.1 VIBRATION ISOLATORS

A. Basis-of-Design Product: Subject to compliance with requirements, provide Mason Industries products or a comparable product by one of the following:

- 1. Ace Mountings Co., Inc.
- 2. Amber/Booth Company, Inc.
- 3. California Dynamics Corporation.
- 4. Isolation Technology, Inc.
- 5. Kinetics Noise Control.
- 6. Vibration Eliminator Co., Inc.
- 7. Vibration Isolation.
- 8. Vibration Mountings & Controls, Inc.
- B. Mounts <**Mason Type ND**>: Double-deflection type, with molded, oil-resistant rubber, or neoprene isolator elements with factory-drilled, encapsulated top plate for bolting to equipment and with baseplate for bolting to structure. Color-code or otherwise identify to indicate capacity range.
 - 1. Materials: Cast-ductile-iron or welded steel housing containing two separate and opposing, oil-resistant rubber or neoprene elements that prevent central threaded element and attachment hardware from contacting the housing during normal operation.
- C. Spring Isolators < Mason SLF>: Freestanding, laterally stable, open-spring isolators.
 - 1. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 2. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 3. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 4. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - Baseplates: Factory drilled for bolting to structure and bonded to 1/4-inch- (6-mm-) thick, rubber isolator pad attached to baseplate underside. Baseplates shall limit floor load to 500 psig (3447 kPa).
 - 6. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.
- D. Spring Hangers < Mason 30N and PC30N>: Combination coil-spring and elastomeric-insert hanger with spring and insert in compression.
 - 1. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washer-reinforced cup to support spring and bushing projecting through bottom of frame.
 - 7. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.2 VIBRATION ISOLATION EQUIPMENT BASES

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- B. Basis-of-Design Product: Subject to compliance with requirements, provide [Mason Type KSL or a comparable product by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. California Dynamics Corporation.
 - 3. Isolation Technology, Inc.
 - 4. Kinetics Noise Control.
 - 5. Vibration Eliminator Co., Inc.
 - 6. Vibration Isolation.
 - 7. Vibration Mountings & Controls, Inc.
- C. Inertia Base: Factory-fabricated, welded, structural-steel bases and rails ready for placement of cast-in-place concrete.
 - Design Requirements: Lowest possible mounting height with not less than 1-inch (25-mm) clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
 - 4. Fabrication: Fabricate steel templates to hold equipment anchor-bolt sleeves and anchors in place during placement of concrete. Obtain anchor-bolt templates from supported equipment manufacturer.
 - 5. See Pump Schedule on Drawing M5-1.

2.3 FACTORY FINISHES

A. Finish: Manufacturer's standard prime-coat finish ready for field painting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic[- and wind]-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION-CONTROL DEVICE INSTALLATION

A. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base.

B. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members.

3.3 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Remove and replace malfunctioning units and retest as specified above.
- C. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust isolators after piping system is at operating weight.
- B. Adjust active height of spring isolators.

END OF SECTION 15074

SECTION 15075 - MECHANICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following mechanical identification materials and their installation:
 - 1. Equipment nameplates.
 - 2. Equipment markers.
 - 3. Equipment signs.
 - 4. Access panel and door markers.
 - 5. Pipe markers.
 - 6. Duct markers.
 - 7. Stencils.
 - 8. Valve tags.
 - 9. Valve schedules.
 - 10. Warning tags.
 - 11. Ceiling identification markers.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Samples: For color, letter style, and graphic representation required for each identification material and device.
- C. Valve numbering scheme.
- D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals.

1.4 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping.

1.5 COORDINATION

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with location of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT IDENTIFICATION DEVICES

- A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment.
 - 1. Data:
 - a. Manufacturer, product name, model number, and serial number.
 - b. Capacity, operating and power characteristics, and essential data.
 - c. Labels of tested compliances.
 - 2. Location: Accessible and visible.
 - 3. Fasteners: As required to mount on equipment.
- B. Equipment Markers: Engraved, color-coded laminated plastic. Include contact-type, permanent adhesive.
 - 1. Terminology: Match schedules as closely as possible.
 - 2. Data:
 - a. Name and number.
 - b. Equipment service.
 - c. Design capacity.
 - d. Other design parameters such as pressure drop, entering and leaving conditions, and speed.
 - 3. Size: 2-1/2 by 4 inches for control devices, dampers, and valves; 4-1/2 by 6 inches for equipment.
- C. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening.
 - 1. Data: Instructions for operation of equipment and for safety procedures.
 - 2. Engraving: Manufacturer's standard letter style, of sizes and with terms to match equipment identification.
 - 3. Thickness: 1/16 inch for units up to 20 sq. in. or 8 inches in length, and 1/8 inch for larger units.
 - 4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

- D. Access Panel and Door Markers: 1/16-inch- thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8-inch center hole for attachment.
 - 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.

2.2 PIPING IDENTIFICATION DEVICES

- A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.
 - 1. Colors: Comply with ASME A13.1, unless otherwise indicated.
 - 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.
 - 3. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location.
 - 4. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.
 - 5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.
- B. Pretensioned Pipe Markers: Precoiled semirigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.
- C. Shaped Pipe Markers: Preformed semirigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.
- D. Self-Adhesive Pipe Markers: Plastic with pressure-sensitive, permanent-type, self-adhesive back.
- E. Plastic Tape: Continuously printed, vinyl tape at least 3 mils thick with pressure-sensitive, permanent-type, self-adhesive back.
 - 1. Width for Markers on Pipes with OD, Including Insulation, Less Than 6 Inches: 3/4 inch minimum.
 - 2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

2.3 DUCT IDENTIFICATION DEVICES

A. Duct Markers: Engraved, color-coded laminated plastic. Include direction of airflow and duct service (such as supply, return, and exhaust). Include contact-type, permanent adhesive.

2.4 STENCILS

- A. Stencils: Prepared with letter sizes according to ASME A13.1 for piping; minimum letter height of 1-1/4 inches for ducts; and minimum letter height of 3/4 inch for access panel and door markers, equipment markers, equipment signs, and similar operational instructions.
 - 1. Stencil Material: Metal or fiberboard.

MECHANICAL IDENTIFICATION 15075 - 3

- 2. Stencil Paint: Exterior, gloss, alkyd enamel or acrylic enamel black, unless otherwise indicated. Paint may be in pressurized spray-can form.
- 3. Identification Paint: Exterior, alkyd enamel or acrylic enamel in colors according to ASME A13.1, unless otherwise indicated.

2.5 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2inch numbers, with numbering scheme approved by Architect. Provide 5/32-inch hole for fastener.
 - 1. Material: 0.032-inch- thick brass.
 - 2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.

2.6 VALVE SCHEDULES

- A. Valve Schedules: For each piping system, on standard-size bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-Schedule Frames: Glazed display frame for removable mounting on masonry walls for each page of valve schedule. Include mounting screws.
 - 2. Frame: Finished hardwood.
 - 3. Glazing: ASTM C 1036, Type I, Class 1, Glazing Quality B, 2.5-mm, single-thickness glass.

2.7 WARNING TAGS

- A. Warning Tags: Preprinted or partially preprinted, accident-prevention tags; of plasticized card stock with matte finish suitable for writing.
 - 1. Size: Approximately 4 by 7 inches.
 - 2. Fasteners: Reinforced grommet and wire or string.
 - 3. Nomenclature: Large-size primary caption such as DANGER, CAUTION, or DO NOT OPERATE.
 - 4. Color: Yellow background with black lettering.

PART 3 - EXECUTION

3.1 APPLICATIONS, GENERAL

A. Products specified are for applications referenced in other Division 15 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option.

3.2 EQUIPMENT IDENTIFICATION

- A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment:
 - 1. Fuel-burning units, including boilers, furnaces and heaters.
 - 2. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - 3. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - 4. Fans, blowers, primary balancing dampers, and mixing boxes.
 - 5. Packaged HVAC central-station and zone-type units.
- B. Install equipment markers with permanent adhesive on or near each major item of mechanical equipment. Data required for markers may be included on signs, and markers may be omitted if both are indicated.
 - 1. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 2. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
 - 3. Locate markers where accessible and visible. Include markers for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Fire department hose valves and hose stations.
 - c. Meters, gages, thermometers, and similar units.
 - d. Fuel-burning units, including boilers, furnaces, heaters, stills, and absorption units.
 - e. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - f. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - g. Fans, blowers, primary balancing dampers, and mixing boxes.
 - h. Packaged HVAC central-station and zone-type units.
 - i. Tanks and pressure vessels.
 - j. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- C. Stenciled Equipment Marker Option (Exterior Equipment Only): Stenciled markers may be provided instead of laminated-plastic equipment markers, at Installer's option, if lettering larger than 1 inch high is needed for proper identification because of distance from normal location of required identification.
- D. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible.
 - 1. Identify mechanical equipment with equipment markers in the following color codes:
 - a. Green: For cooling equipment and components.
 - b. Yellow: For heating equipment and components.

- c. Green and Yellow: For combination cooling and heating equipment and components.
- 2. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- 3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units.
- 4. Include signs for the following general categories of equipment:
 - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.
 - b. Fuel-burning units, including boilers, furnaces and heaters.
 - c. Pumps, compressors, chillers, condensers, and similar motor-driven units.
 - d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.
 - e. Fans, blowers, primary balancing dampers, and mixing boxes.
 - f. Packaged HVAC central-station and zone-type units.
 - g. Tanks and pressure vessels.
 - h. Strainers, filters, humidifiers, water-treatment systems, and similar equipment.
- E. Install access panel markers with screws on equipment access panels.

3.3 PIPING IDENTIFICATION

- A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.
 - 1. Pipes with OD, Including Insulation, Less Than 6 Inches: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches wide, lapped at least 1-1/2 inches at both ends of pipe marker, and covering full circumference of pipe.
 - 2. Pipes with OD, Including Insulation, 6 Inches and Larger: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches wide, lapped at least 3 inches at both ends of pipe marker, and covering full circumference of pipe.
- B. Stenciled Pipe Marker (Exterior pipe only): Install stenciled pipe markers with painted colorcoded bands complying with ASME A13.1 on each piping system.
 - 1. Identification Paint: Use for contrasting background.
 - 2. Stencil Paint: Use for pipe marking.
- C. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.

- 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
- 7. On piping above removable acoustical ceilings. Omit intermediately spaced markers.

3.4 DUCT IDENTIFICATION

- A. Install duct markers with permanent adhesive on air ducts in the following color codes:
 - 1. Green : For cold-air supply ducts.
 - 2. Yellow : For hot-air supply ducts.
 - 3. Green and Yellow: For combination heating and cooling duct.
 - 4. Blue : For exhaust-, outside-, relief-, return-, and mixed-air ducts.
 - 5. ASME A13.1 Colors and Designs: For hazardous material exhaust.
 - 6. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- B. Locate markers near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

3.5 VALVE-TAG INSTALLATION

- A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.
- B. Valve-Tag Application Schedule: Tag valves according to size and with captions similar to those indicated in the following:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 1-1/2 inches round.
 - b. Hot Water: 1-1/2 inches round.
 - c. Fire Protection: 1-1/2 inches round.
 - d. Hot and Chilled Water: 1-1/2 inches round.

3.6 VALVE-SCHEDULE INSTALLATION

A. Mount valve schedule on wall in accessible location in each major equipment room.

3.7 WARNING-TAG INSTALLATION

- A. Write required message on, and attach warning tags to, equipment and other items where required.
 - 1. Provide tag on cold water make-up valves for 30% propylene glycol systems.

3.8 ADJUSTING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

3.9 CLEANING

A. Clean faces of mechanical identification devices and glass frames of valve schedules.

3.10 CEILING TILE IDENTIFICATION MARKERS

- A. Coordinate the color coding system with building maintenance personnel to identify equipment above accessible ceiling requiring service. In the absence of coordination provide the following color coding system;
 - 1. Red: Fire sprinkler valves, flow switches.
 - 2. Yellow: Hot utility shut-off valves.
 - 3. Blue: Fire and smoke damper access doors.
 - 4. Green: Domestic water shut-off valves.
 - 5. Black: Filters.
 - 6. Orange: Piping cleanouts.
 - 7. Grey: Variable volume boxes, heating coils, control dampers, and ductwork accessories.
 - 8. Brown: Hydronic piping sectional drain valves.

END OF SECTION

SECTION 15081 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes semirigid and flexible duct, plenum, and breeching insulation; insulating cements; field-applied jackets; accessories and attachments; and sealing compounds.
- B. Related Sections include the following:
 - 1. Division 7 Section "Firestopping" for firestopping materials and requirements for penetrations through fire and smoke barriers.
 - 2. Division 15 Section "Equipment Insulation" for insulation materials and application for pumps, tanks, hydronic specialties, and other equipment.
 - 3. Division 15 Section "Pipe Insulation" for insulation for piping systems.

1.3 SUBMITTALS

- A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details for the following:
 - 1. Removable insulation sections at access panels.
 - 2. Application of field-applied jackets.
 - 3. Applications at linkages for control devices.
- C. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets with requirements indicated. Include dates of tests.

1.4 QUALITY ASSURANCE

- A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.
 - 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.

2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

A. Coordinate clearance requirements with duct Installer for insulation application.

1.7 SCHEDULING

A. Schedule insulation application after testing duct systems. Insulation application may begin on segments of ducts that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mineral-Fiber Insulation:
 - a. CertainTeed Manson.
 - b. Knauf FiberGlass GmbH.
 - c. Owens-Corning Fiberglas Corp.
 - d. Schuller International, Inc.

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Board Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IB, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.
- B. Mineral-Fiber Blanket Thermal Insulation: Glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II, without facing and with all-service jacket manufactured from kraft paper, reinforcing scrim, aluminum foil, and vinyl film.

2.3 FIELD-APPLIED JACKETS

DUCT INSULATION

A. General: ASTM C 921, Type 1, unless otherwise indicated.

2.4 ACCESSORIES AND ATTACHMENTS

- A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd..
 - 1. Tape Width: 4 inches.
- B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:
 - 1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch thick.
 - 2. Galvanized Steel: 0.005 inch thick.
 - 3. Aluminum: 0.007 inch thick.
 - 4. Brass: 0.010 inch thick.
 - 5. Nickel-Copper Alloy: 0.005 inch thick.
- C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.
- D. Self-Adhesive Anchor Pins and Speed Washers: Galvanized steel plate, pin, and washer manufactured for attachment to duct and plenum with adhesive. Pin length sufficient for insulation thickness indicated.

2.5 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

DUCT INSULATION

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; and free of voids throughout the length of ducts and fittings.
- B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each duct system.
- C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Apply multiple layers of insulation with longitudinal and end seams staggered.
- E. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- F. Keep insulation materials dry during application and finishing.
- G. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- H. Apply insulation with the least number of joints practical.
- I. Apply insulation over fittings and specialties, with continuous thermal and vapor-retarder integrity, unless otherwise indicated.
- J. Hangers and Anchors: Where vapor retarder is installed, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic. Apply insulation continuously through hangers and around anchor attachments.
- K. Insulation Terminations: For insulation application where vapor retarders are installed, seal ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
- L. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Joints and Seams: Cover with tape and vapor retarder as recommended by insulation material manufacturer to maintain vapor seal.
 - 3. Vapor-Retarder Mastics: Where vapor retarders are installed, apply mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- M. Cut insulation according to manufacturer's written instructions to prevent compressing insulation to less than 75 percent of its nominal thickness.
- N. Install vapor-retarder mastic on ducts and plenums scheduled to receive vapor retarders.
 - 1. Ducts with Vapor Retarders: Overlap insulation facing at seams and seal with vaporretarder mastic and pressure-sensitive tape having same facing as insulation. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-retarder seal.
 - 2. Ducts without Vapor Retarders: Overlap insulation facing at seams and secure with outward clinching staples and pressure-sensitive tape having same facing as insulation.

- O. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 - 1. Seal penetrations with vapor-retarder mastic.
 - 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 - 3. Seal insulation to roof flashing with vapor-retarder mastic.
- P. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and partitions, except fire-rated walls and partitions.
- Q. Fire-Rated Wall and Partition Penetrations: Terminate insulation at fire/smoke damper sleeves for fire-rated wall and partition penetrations.
- R. Floor Penetrations: Terminate insulation at underside of floor assembly and at floor support at top of floor.
 - 1. For insulation indicated to have vapor retarders, taper termination and seal insulation ends with vapor-retarder mastic.

3.4 MINERAL-FIBER INSULATION APPLICATION

- A. Blanket Applications for Ducts and Plenums: Secure blanket insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per square foot, for 100 percent coverage of duct and plenum surfaces.
 - 2. Install anchor pins and speed washers on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches. Space 16 inches o.c. each way, and 3 inches maximum from insulation joints. Apply additional pins and clips to hold insulation tightly against surface at cross bracing.
 - c. Anchor pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - 3. Impale insulation over anchors and attach speed washers.
 - 4. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation segment with 1/2-inch staples, 1 inch o.c., and cover with pressure-sensitive tape having same facing as insulation.
 - 6. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. Secure with steel band at end joints and spaced a maximum of 18 inches o.c.
 - 7. Apply insulation on rectangular duct elbows and transitions with a full insulation segment for each surface. Apply insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.

- 8. Insulate duct stiffeners, hangers, and flanges that protrude beyond the insulation surface with 6-inch- wide strips of the same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with anchor pins spaced 6 inches o.c.
- 9. Apply vapor-retarder mastic to open joints, breaks, and punctures for insulation indicated to receive vapor retarder.
- B. Board Applications for Ducts and Plenums: Secure board insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per square foot, for 100 percent coverage of duct and plenum surfaces.
 - 2. Space anchor pins as follows:
 - a. On duct sides with dimensions 18 inches and smaller, along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches. Space 16 inches o.c. each way, and 3 inches maximum from insulation joints. Apply additional pins and clips to hold insulation tightly against surface at cross bracing.
 - c. Anchor pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - 3. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation segment with 1/2-inch staples, 1 inch o.c., and cover with pressure-sensitive tape having same facing as insulation.
 - 5. Apply insulation on rectangular duct elbows and transitions with a full insulation segment for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Apply insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
 - 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond the insulation surface with 6-inch- wide strips of the same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with anchor pins spaced 6 inches o.c.
 - 7. Apply vapor-retarder mastic to open joints, breaks, and punctures for insulation indicated to receive vapor retarder.

3.5 FIELD-APPLIED JACKET APPLICATION

- A. Apply glass-cloth jacket, where installed, directly over bare insulation or insulation with factoryapplied jackets.
 - 1. Apply jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of jacket manufacturer's recommended adhesive.
 - 3. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.

3.6 DUCT SYSTEM APPLICATIONS

A. Insulation materials and thicknesses are specified in schedules at the end of this Section.

DUCT INSULATION

- B. Materials and thickness for systems listed below are specified in schedules at the end of this Section.
- C. Insulate the following plenums and duct systems:
 - 1. Indoor concealed supply and outside-air ductwork.
 - 2. Indoor exposed supply and outside-air ductwork.
- D. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 - 1. Factory-insulated flexible ducts.
 - 2. Factory-insulated plenums, casings, terminal boxes, and filter boxes and sections.
 - 3. Flexible connectors.
 - 4. Vibration-control devices.
 - 5. Testing agency labels and stamps.
 - 6. Nameplates and data plates.
 - 7. Access panels and doors in air-distribution systems.
 - 8. Ducts indicted to receive duct liner.

3.7 INDOOR DUCT AND PLENUM APPLICATION SCHEDULE

- A. Service: Round, supply-air ducts, concealed.
 - 1. Material: Mineral-fiber blanket.
 - 2. Thickness: 1-1/2 inches.
 - 3. Number of Layers: One.
 - 4. Field-Applied Jacket: Foil and paper.
 - 5. Vapor Retarder Required: Yes.
 - 6. Vapor Retarder Required: Yes.
- B. Service: Rectangular, supply-air ducts, concealed.
 - 1. Material: Mineral-fiber blanket.
 - 2. Thickness: 1-1/2 inches.
 - 3. Number of Layers: One.
 - 4. Field-Applied Jacket: Foil and paper.
 - 5. Vapor Retarder Required: Yes.
- C. Service: Round or rectangular, outside-air ducts exposed.
 - 1. Material: Mineral-fiber board.
 - 2. Thickness: 2 inches.
 - 3. Number of Layers: One.
 - 4. Field-Applied Jacket: Foil and paper.
 - 5. Vapor Retarder Required: Yes.
- D. Service: Round or rectangular, return air Mechanical Room exposed.
 - 1. Same as "C" above, exception Thickness 1".

E. Service: Existing induction unit riser ducts located at perimeter. Insulate the same as "A" above. Round, supply-air ducts, concealed.

END OF SECTION

SECTION 15083 - PIPE INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes preformed, rigid and flexible pipe insulation; insulating cements; fieldapplied jackets; accessories and attachments; and sealing compounds.
- B. Related Sections include the following:
 - 1. Division 7 Section "Firestopping" for firestopping materials and requirements for penetrations through fire and smoke barriers.
 - 2. Division 15 Section "Duct Insulation" for insulation for ducts and plenums.
 - 3. Division 15 Section "Hangers and Supports" for pipe insulation shields, inserts, and protection saddles.

1.3 SUBMITTALS

- A. Product Data: Identify thermal conductivity, thickness, and jackets (both factory and field applied, if any), for each type of product indicated.
- B. Shop Drawings: Show fabrication and installation details for the following:
 - 1. Application of protective shields, saddles, and inserts at pipe hangers for each type of insulation and hanger.
 - 2. Attachment and covering of heat trace inside insulation.
 - 3. Insulation application at pipe expansion joints for each type of insulation.
 - 4. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 - 5. Removable insulation at piping specialties and equipment connections.
 - 6. Application of field-applied jackets.

1.4 QUALITY ASSURANCE

A. Fire-Test-Response Characteristics: As determined by testing materials identical to those specified in this Section according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and sealer and cement material containers with appropriate markings of applicable testing and inspecting agency.

- 1. Insulation Installed Indoors: Flame-spread rating of 25 or less, and smoke-developed rating of 50 or less.
- 2. Insulation Installed Outdoors: Flame-spread rating of 75 or less, and smoke-developed rating of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Ship insulation materials in containers marked by manufacturer with appropriate ASTM specification designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 15 Section "Hangers and Supports."
- B. Coordinate clearance requirements with piping Installer for insulation application.
- C. Coordinate installation and testing of steam or electric heat tracing.

1.7 SCHEDULING

A. Schedule insulation application after testing piping systems and, where required, after installing and testing heat-trace tape. Insulation application may begin on segments of piping that have satisfactory test results.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Mineral-Fiber Insulation:
 - a. CertainTeed Manson.
 - b. Knauf FiberGlass GmbH.
 - c. Owens-Corning Fiberglas Corp.
 - d. Schuller International, Inc.
 - 2. Flexible Elastomeric Thermal Insulation:
 - a. Armstrong World Industries, Inc.
 - b. Rubatex Corp.

2.2 INSULATION MATERIALS

- A. Mineral-Fiber Insulation: Glass fibers bonded with a thermosetting resin complying with the following:
 - 1. Preformed Pipe Insulation: Comply with ASTM C 547, Type 1, with factory-applied, allpurpose, vapor-retarder jacket.
 - 2. Fire-Resistant Adhesive: Comply with MIL-A-3316C in the following classes and grades:
 - a. Class 1, Grade A for bonding glass cloth and tape to unfaced glass-fiber insulation, for sealing edges of glass-fiber insulation, and for bonding lagging cloth to unfaced glass-fiber insulation.
 - 3. Vapor-Retarder Mastics: Fire- and water-resistant, vapor-retarder mastic for indoor applications. Comply with MIL-C-19565C, Type II.
 - 4. Mineral-Fiber Insulating Cements: Comply with ASTM C 195.
 - 5. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449/C 449M.
- B. Flexible Elastomeric Thermal Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Adhesive: As recommended by insulation material manufacturer.
 - 2. Ultraviolet-Protective Coating: As recommended by insulation manufacturer.
- C. Prefabricated Thermal Insulating Fitting Covers: Comply with ASTM C 450 for dimensions used in preforming insulation to cover valves, elbows, tees, and flanges.

2.3 FIELD-APPLIED JACKETS

- A. PVC Jacket: High-impact, ultraviolet-resistant PVC; 20 mils thick; roll stock ready for shop or field cutting and forming.
 - 1. Adhesive: As recommended by insulation material manufacturer.
 - 2. PVC Jacket Color: White or gray.
- B. Heavy PVC Fitting Covers: Factory-fabricated fitting covers manufactured from 30-mil- thick, high-impact, ultraviolet-resistant PVC.
 - 1. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories for the disabled.
 - 2. Adhesive: As recommended by insulation material manufacturer.
- C. Aluminum Jacket: Factory cut and rolled to indicated sizes. Comply with ASTM B 209, 3003 alloy, H-14 temper.
- D. Stainless-Steel Jacket: ASTM A 666, Type 304 or 316; 0.10 inch thick; and factory cut and rolled to indicated sizes.

2.4 ACCESSORIES AND ATTACHMENTS

- A. Glass Cloth and Tape: Comply with MIL-C-20079H, Type I for cloth and Type II for tape. Woven glass-fiber fabrics, plain weave, presized a minimum of 8 oz./sq. yd..
 - 1. Tape Width: 4 inches.
- B. Bands: 3/4 inch wide, in one of the following materials compatible with jacket:
 - 1. Stainless Steel: ASTM A 666, Type 304; 0.020 inch thick.
 - 2. Galvanized Steel: 0.005 inch thick.
 - 3. Aluminum: 0.007 inch thick.
 - 4. Brass: 0.010 inch thick.
 - 5. Nickel-Copper Alloy: 0.005 inch thick.
- C. Wire: 0.080-inch, nickel-copper alloy; 0.062-inch, soft-annealed, stainless steel; or 0.062-inch, soft-annealed, galvanized steel.

2.5 VAPOR RETARDERS

A. Mastics: Materials recommended by insulation material manufacturer that are compatible with insulation materials, jackets, and substrates.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry pipe and fitting surfaces. Remove materials that will adversely affect insulation application.

3.3 GENERAL APPLICATION REQUIREMENTS

- A. Apply insulation materials, accessories, and finishes according to the manufacturer's written instructions; with smooth, straight, and even surfaces; free of voids throughout the length of piping, including fittings, valves, and specialties.
- B. Refer to schedules at the end of this Section for materials, forms, jackets, and thicknesses required for each piping system.

- C. Use accessories compatible with insulation materials and suitable for the service. Use accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Apply insulation with longitudinal seams at top and bottom of horizontal pipe runs.
- E. Apply multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Seal joints and seams with vapor-retarder mastic on insulation indicated to receive a vapor retarder.
- H. Keep insulation materials dry during application and finishing.
- I. Apply insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by the insulation material manufacturer.
- J. Apply insulation with the least number of joints practical.
- K. Apply insulation over fittings, valves, and specialties, with continuous thermal and vaporretarder integrity, unless otherwise indicated. Refer to special instructions for applying insulation over fittings, valves, and specialties.
- L. Hangers and Anchors: Where vapor retarder is indicated, seal penetrations in insulation at hangers, supports, anchors, and other projections with vapor-retarder mastic.
 - 1. Apply insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor retarders are indicated, extend insulation on anchor legs at least 12 inches from point of attachment to pipe and taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
 - 3. Install insert materials and apply insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by the insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect the jacket from tear or puncture by the hanger, support, and shield.
- M. Insulation Terminations: For insulation application where vapor retarders are indicated, taper insulation ends. Seal tapered ends with a compound recommended by the insulation material manufacturer to maintain vapor retarder.
- N. Apply adhesives and mastics at the manufacturer's recommended coverage rate.
- O. Apply insulation with integral jackets as follows:
 - 1. Pull jacket tight and smooth.
 - 2. Circumferential Joints: Cover with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip and spaced 4 inches o.c.

- 3. Longitudinal Seams: Overlap jacket seams at least 1-1/2 inches. Apply insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. Exception: Do not staple longitudinal laps on insulation having a vapor retarder.
- 4. Vapor-Retarder Mastics: Where vapor retarders are indicated, apply mastic on seams and joints and at ends adjacent to flanges, unions, valves, and fittings.
- 5. At penetrations in jackets for thermometers and pressure gages, fill and seal voids with vapor-retarder mastic.
- P. Roof Penetrations: Apply insulation for interior applications to a point even with top of roof flashing.
 - 1. Seal penetrations with vapor-retarder mastic.
 - 2. Apply insulation for exterior applications tightly joined to interior insulation ends.
 - 3. Extend metal jacket of exterior insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal metal jacket to roof flashing with vapor-retarder mastic.
- Q. Exterior Wall Penetrations: For penetrations of below-grade exterior walls, terminate insulation flush with mechanical sleeve seal. Seal terminations with vapor-retarder mastic.
- R. Interior Wall and Partition Penetrations: Apply insulation continuously through walls and floors.
- S. Fire-Rated Wall and Partition Penetrations: Apply insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Firestopping and fire-resistive joint sealers are specified in Division 7 Section "Firestopping."
- T. Floor Penetrations: Apply insulation continuously through floor assembly.
 - 1. For insulation with vapor retarders, seal insulation with vapor-retarder mastic where floor supports penetrate vapor retarder.

3.4 MINERAL-FIBER INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes as follows:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire, tape, or bands without deforming insulation materials.
 - 2. Where vapor retarders are indicated, seal longitudinal seams and end joints with vaporretarder mastic. Apply vapor retarder to ends of insulation at intervals of 15 to 20 feet to form a vapor retarder between pipe insulation segments.
 - 3. For insulation with factory-applied jackets, secure laps with outward clinched staples at 6 inches o.c.
 - 4. For insulation with factory-applied jackets with vapor retarders, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by the insulation material manufacturer and seal with vapor-retarder mastic.
- B. Apply insulation to flanges as follows:

PIPE INSULATION

- 1. Apply preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Apply canvas jacket material with manufacturer's recommended adhesive, overlapping seams at least 1 inch, and seal joints with vapor-retarder mastic.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply premolded insulation sections of the same material and thickness as straight segments of pipe insulation. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation elbows and fittings are not available, apply mitered sections of pipe insulation, or glass-fiber blanket insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire, tape, or bands.
 - 3. Cover fittings with heavy PVC fitting covers. Overlap PVC covers on pipe insulation jackets at least 1 inch at each end. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
- D. Apply insulation to valves and specialties as follows:
 - 1. Apply premolded insulation sections of the same material and thickness as straight segments of pipe insulation when available. Secure according to manufacturer's written instructions.
 - 2. When premolded insulation sections are not available, apply glass-fiber blanket insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, arrange insulation for access to strainer basket without disturbing insulation.
 - 3. Apply insulation to flanges as specified for flange insulation application.
 - 4. Use preformed heavy PVC fitting covers for valves. Secure fitting covers with manufacturer's attachments and accessories. Seal seams with tape and vapor-retarder mastic.
 - 5. For larger sizes where PVC fitting covers are not available, seal insulation with canvas jacket and sealing compound recommended by the insulation material manufacturer.

3.5 FLEXIBLE ELASTOMERIC THERMAL INSULATION APPLICATION

- A. Apply insulation to straight pipes and tubes as follows:
 - 1. Follow manufacturer's written instructions for applying insulation.
 - 2. Seal longitudinal seams and end joints with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.
- B. Apply insulation to flanges as follows:
 - 1. Apply pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation segment the same as overall width of the flange and bolts, plus twice the thickness of the pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of the same thickness as pipe insulation.

- 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.
- C. Apply insulation to fittings and elbows as follows:
 - 1. Apply mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.
- D. Apply insulation to valves and specialties as follows:
 - 1. Apply preformed valve covers manufactured of the same material as pipe insulation and attached according to the manufacturer's written instructions.
 - 2. Apply cut segments of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. For check valves, fabricate removable sections of insulation arranged to allow access to strainer basket.
 - 3. Apply insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive. Cement to avoid openings in insulation that will allow passage of air to the pipe surface.

3.6 FIELD-APPLIED JACKET APPLICATION

- A. Apply glass-cloth jacket, where indicated, directly over bare insulation or insulation with factoryapplied jackets.
 - 1. Apply jacket smooth and tight to surface with 2-inch overlap at seams and joints.
 - 2. Embed glass cloth between two 0.062-inch- thick coats of jacket manufacturer's recommended adhesive.
 - 3. Completely encapsulate insulation with jacket, leaving no exposed raw insulation.
- B. Foil and Paper Jackets: Apply foil and paper jackets where indicated.
 - 1. Draw jacket material smooth and tight.
 - 2. Apply lap or joint strips with the same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Apply jackets with 1-1/2-inch laps at longitudinal seams and 3-inch- wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-retarder mastic.
- C. Apply PVC jacket where indicated, with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
- D. Apply metal jacket where indicated, with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.7 FINISHES

- A. Glass-Cloth Jacketed Insulation: Paint insulation finished with glass-cloth jacket as specified in Division 9 Section "Painting."
- B. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of the insulation manufacturer's recommended protective coating.
- C. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.

3.8 PIPING SYSTEM APPLICATIONS

- A. Insulation materials and thicknesses are specified in schedules at the end of this Section.
- B. Items Not Insulated: Unless otherwise indicated, do not apply insulation to the following systems, materials, and equipment:
 - 1. Flexible connectors.
 - 2. Vibration-control devices.
 - 3. Fire-suppression piping.
 - 4. Drainage piping located in crawl spaces, unless otherwise indicated.
 - 5. Below-grade piping, unless otherwise indicated.
 - 6. Chrome-plated pipes and fittings, unless potential for personnel injury.
 - 7. Unions.

3.9 FIELD QUALITY CONTROL

- A. Inspection: Perform the following field quality-control inspections, after installing insulation materials, jackets, and finishes, to determine compliance with requirements:
 - 1. Inspect fittings and valves randomly selected by Architect.
 - 2. Remove fitting covers from 20 elbows or 1 percent of elbows, whichever is less, for various pipe sizes.
 - 3. Remove fitting covers from 20 valves or 1 percent of valves, whichever is less, for various pipe sizes.
- B. Insulation applications will be considered defective if sample inspection reveals noncompliance with requirements. Remove defective Work and replace with new materials according to these Specifications.
- C. Reinstall insulation and covers on fittings and valves uncovered for inspection according to these Specifications.

3.10 INSULATION APPLICATION SCHEDULE, GENERAL

A. Refer to insulation application schedules for required insulation materials, vapor retarders, and field-applied jackets.

B. Application schedules identify piping system and indicate pipe size ranges and material, thickness, and jacket requirements.

3.11 INTERIOR INSULATION APPLICATION SCHEDULE

- A. Service: Domestic hot, tempered, hot and tempered recirculated hot water.
 - 1. Operating Temperature: 60 to 140 deg F.
 - 2. Insulation Material: Mineral fiber.
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Copper Pipe, up to $4^{\circ} 1^{\circ}$ thick.
 - 4. Field-Applied Jacket: Where noted on drawings.
 - 5. Vapor Retarder Required: No.
 - 6. Finish: None.
- B. Service: Domestic cold water.
 - 1. Operating Temperature: 35 to 60 deg F.
 - 2. Insulation Material: Mineral fiber.
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Copper Pipe, up to $4^{"} 1^{"}$ thick.
 - 4. Field-Applied Jacket: Where noted on drawings.
 - 5. Vapor Retarder Required: Yes.
 - 6. Finish: None.
- C. Service: Rainwater conductors.
 - 1. Operating Temperature: 32 to 100 deg F.
 - 2. Insulation Material: Mineral fiber.
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Cast Iron Pipe, up to 8" 1" thick.
 - 4. Field-Applied Jacket: None.
 - 5. Vapor Retarder Required: Yes.
 - 6. Finish: None.
- D. Service: Condensate drain piping.
 - 1. Operating Temperature: 35 to 75 deg F.
 - 2. Insulation Material: Mineral fiber.
 - 3. Insulation Thickness: 1" thick.
 - 4. Field-Applied Jacket: None.
 - 5. Vapor Retarder Required: Yes.
 - 6. Finish: None.

- E. Service: Chilled-water supply and return.
 - 1. Operating Temperature: 35 to 75 deg F.
 - 2. Insulation Material: Mineral fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel or copper pipe, up to $2^{\circ} 1^{\circ}$ thick.
 - b. Steel pipe, 3" to 4" 1" thick.
 - c. Steel pipe 5" to 8" 1 1/2" thick.
 - 4. Field-Applied Jacket: Where noted on drawings.
 - 5. Vapor Retarder Required: Yes.
 - 6. Finish: None.
- F. Service: Heating hot-water supply and return.
 - 1. Operating Temperature: 100 to 200 deg F.
 - 2. Insulation Material: Mineral fiber
 - 3. Insulation Thickness: Apply the following insulation thicknesses:
 - a. Steel or copper pipe, up to $2^{\circ} 1^{\circ}$ thick.
 - b. Steel pipe 3" to 4" 1" thick.
 - c. Steel Pipe, 5" to 6" 1 1/2" thick.
 - 4. Field-Applied Jacket: Where noted on drawings.
 - 5. Vapor Retarder Required: No.
 - 6. Finish: None.
- G. Service: Domestic Hot and Cold Water inside masonry units:
 - 1. Operating temperature: 35-200 deg. F.
 - 2. Insulation Material: Elastomeric.
 - 3. Thickness: ½ thick.
- H. Service: Domestic Hot and Cold Water inside chase walls:
 - 1. Operating temperature: 35-200 deg. F.
 - 2. Insulation Material: Elastomeric.
 - 3. Thickness: ¹/₂ thick.
- I. Service: Existing Hot and Chilled Water Risers for Induction Units at Perimeter Wall:
 - 1. Hot water supply and return risers and reverse return riser. Insulate same as "F" above heating hot water supply and return.
 - 2. Chilled water supply and return risers and reverse return riser. Insulate same as "E" above chilled water supply and return.

END OF SECTION

PIPE INSULATION

SECTION 15815 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes metal ducts for supply, return, outside, and exhaust air-distribution systems in pressure classes from minus 1- to plus 3-inch wg. Metal ducts include the following:
 - 1. Rectangular ducts and fittings.
 - 2. Single-wall, round spiral-seam ducts and formed fittings.
- B. Related Sections include the following:
 - 1. Division 15 Section "Duct Accessories" for dampers, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 SYSTEM DESCRIPTION

A. Duct system design, as indicated, has been used to select size and type of air-moving and distribution equipment and other air system components. Changes to layout or configuration of duct system must be specifically approved in writing by Architect. Accompany requests for layout modifications with calculations showing that proposed layout will provide original design results without increasing system total pressure.

1.4 SUBMITTALS

- A. Shop Drawings: Drawn to 1/8 inch equals 1 foot scale. Show fabrication and installation details for metal ducts.
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Duct layout indicating sizes and pressure classes.
 - 3. Elevations of top and bottom of ducts.
 - 4. Dimensions of main duct runs from building grid lines.
 - 5. Fittings.
 - 6. Reinforcement and spacing.
 - 7. Seam and joint construction.
 - 8. Penetrations through fire-rated and other partitions.
 - 9. Equipment installation based on equipment being used on Project.
 - 10. Duct accessories, including access doors and panels.

- 11. Hangers and supports, including methods for duct and building attachment, vibration isolation.
- B. Coordination: Show ductwork on reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - 1. Other systems installed in same space as ducts.
 - 2. Ceiling- and wall-mounting access doors and panels required to provide access to dampers and other operating devices.
 - 3. Ceiling-mounting items, including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- C. Welding certificates.
- D. Field quality-control test reports.

1.5 QUALITY ASSURANCE

- A. Welding: Qualify procedures and personnel according to AWS D1.1, "Structural Welding Code--Steel," for hangers and supports and AWS D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. NFPA Compliance:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- C. Comply with NFPA 96, "Ventilation Control and Fire Protection of Commercial Cooking Operations," Ch. 3, "Duct System," for range hood ducts, unless otherwise indicated.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 SHEET METAL MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

- B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G90 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.
- C. Carbon-Steel Sheets: ASTM A 366/A 366M, cold-rolled sheets; commercial quality; with oiled, matte finish for exposed ducts.
- D. Stainless Steel: ASTM A 480/A 480M, Type 304, and having a No. 2D finish for concealed ducts and for exposed ducts.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 SEALANT MATERIALS

- A. Joint and Seam Sealants, General: The term "sealant" is limited to materials of adhesive or mastic nature.
- B. Water-Based Joint and Seam Sealant: Flexible, adhesive sealant, resistant to UV light when cured, UL 723 listed, and complying with NFPA requirements for Class 1 ducts.
- C. Solvent-Based Joint and Seam Sealant: One-part, nonsag, solvent-release-curing, polymerized butyl sealant formulated with a minimum of 75 percent solids.
- D. Flanged Joint Mastic: One-part, acid-curing, silicone, elastomeric joint sealant complying with ASTM C 920, Type S, Grade NS, Class 25, Use O.
- E. Flange Gaskets: Butyl rubber or EPDM polymer with polyisobutylene plasticizer.

2.4 HANGERS AND SUPPORTS

- A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 2. Exception: Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- B. Hanger Materials: Galvanized sheet steel or threaded steel rod.
 - 1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
 - 2. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for steel sheet width and thickness and for steel rod diameters.
- C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

- D. Trapeze and Riser Supports: Steel shapes complying with ASTM A 36/A 36M.
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Stainless-Steel Ducts: Stainless-steel support materials.

2.5 RECTANGULAR DUCT FABRICATION

- A. Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and complying with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 - 1. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure class.
 - 2. Deflection: Duct systems shall not exceed deflection limits according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- B. Transverse Joints: Prefabricated slide-on joints and components constructed using manufacturer's guidelines for material thickness, reinforcement size and spacing, and joint reinforcement.
 - 1. Manufacturers:
 - a. Ductmate Industries, Inc.
 - b. Nexus Inc.
 - c. Ward Industries, Inc.
- C. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of nonbraced panel area unless ducts are lined.
- D. <u>Provide turning vanes in all return air duct elbows.</u>

2.6 ROUND DUCT AND FITTING FABRICATION

- A. Round, Spiral Lock-Seam Ducts: Fabricate supply ducts of galvanized steel according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
 - 1. Manufacturers:
 - a. McGill AirFlow Corporation.
 - b. SEMCO Incorporated.
 - c. Lindab
- B. Duct Joints:
 - 1. Ducts up to 20 Inches in Diameter: Interior, center-beaded slip coupling, sealed before and after fastening, attached with sheet metal screws.
 - 2. Ducts 21 to 72 Inches in Diameter: Three-piece, gasketed, flanged joint consisting of two internal flanges with sealant and one external closure band with gasket.

- 3. Ducts Larger Than 72 Inches in Diameter: Companion angle flanged joints per SMACNA "HVAC Duct Construction Standards--Metal and Flexible," Figure 3-2.
- C. 90-Degree Tees and Laterals and Conical Tees: Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," with metal thicknesses specified for longitudinal-seam straight ducts.
- D. Diverging-Flow Fittings: Fabricate with reduced entrance to branch taps and with no excess material projecting from fitting onto branch tap entrance.
- E. Fabricate elbows using die-formed, gored, pleated, or mitered construction. Unless elbow construction type is indicated, fabricate elbows as follows:
 - 1. Mitered-Elbow Radius and Number of Pieces: Welded construction complying with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
 - 2. Round Mitered Elbows: Welded construction with the following metal thickness for pressure classes from minus 2- to plus 2-inch wg:
 - a. Ducts 3 to 36 Inches in Diameter: 0.034 inch.
 - b. Ducts 37 to 50 Inches in Diameter: 0.040 inch.
 - c. Ducts 52 to 60 Inches in Diameter: 0.052 inch.
 - d. Ducts 62 to 84 Inches in Diameter: 0.064 inch.
 - 3. 90-Degree, 2-Piece, Mitered Elbows: Use only for supply systems or for materialhandling Class A or B exhaust systems and only where space restrictions do not permit using radius elbows. Fabricate with single-thickness turning vanes.
 - 4. Round Elbows 8 Inches and Less in Diameter: Fabricate die-formed elbows for 45- and 90-degree elbows and pleated elbows for 30, 45, 60, and 90 degrees only. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
 - 5. Round Elbows 9 through 14 Inches in Diameter: Fabricate gored or pleated elbows for 30, 45, 60, and 90 degrees unless space restrictions require mitered elbows. Fabricate nonstandard bend-angle configurations or nonstandard diameter elbows with gored construction.
 - 6. Round Elbows Larger Than 14 Inches in Diameter and All Flat-Oval Elbows: Fabricate gored elbows unless space restrictions require mitered elbows.
 - 7. Die-Formed Elbows for Sizes through 8 Inches in Diameter and All Pressures 0.040 inch thick with 2-piece welded construction.
 - 8. Round Gored-Elbow Metal Thickness: Same as non-elbow fittings specified above.

PART 3 - EXECUTION

3.1 DUCT APPLICATIONS

- A. Static-Pressure Classes: Unless otherwise indicated, construct ducts according to the following:
 - 1. Supply Ducts VAV-Before Air Terminal Units): 3-inch wg.
 - 2. Supply Ducts (after Air Terminal Units): 1-inch wg.
 - 3. Return Ducts (Negative Pressure): 1-inch wg.
 - 4. Exhaust Ducts (Negative Pressure): 1-inch wg.

METAL DUCTS

- B. All ducts shall be galvanized steel.
- C. Duct Liner Apply to following
 - 1. Indicated sections of return air duct.
 - 2. Supply duct in Mechanical Room from unit discharge to floor penetration.

3.2 DUCT INSTALLATION

- A. Construct and install ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
- B. Install round ducts in lengths not less than 12 feet unless interrupted by fittings.
- C. Install ducts with fewest possible joints.
- D. Install fabricated fittings for changes in directions, size, and shape and for connections.
- E. Install couplings tight to duct wall surface with a minimum of projections into duct. Secure couplings with sheet metal screws. Install screws at intervals of 12 inches, with a minimum of 3 screws in each coupling.
- F. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated.
- J. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.
- K. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.
- L. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.
- M. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches.
- N. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers, sleeves, and firestopping sealant. Fire and smoke dampers are specified in Division 15 Section "Duct Accessories." Firestopping materials and installation methods are specified in Division 7 Section "Through-Penetration Firestop Systems."

- O. Protect duct interiors from the elements and foreign materials until building is enclosed. Follow SMACNA's "Duct Cleanliness for New Construction."
- P. Paint interiors of metal ducts which do not have duct liner for 24 inches upstream of registers and grilles. Apply one coat of flat, black, latex finish coat over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 9 painting Sections.

3.3 SEAM AND JOINT SEALING

- A. Seal duct seams and joints according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for duct pressure class indicated.
 - 1. For pressure classes lower than 2-inch wg, seal transverse joints.
- B. Seal ducts before external insulation is applied.

3.4 HANGING AND SUPPORTING

- A. Support horizontal ducts within 24 inches of each elbow and within 48 inches of each branch intersection.
- B. Support vertical ducts at maximum intervals of 16 feet and at each floor.
- C. Install upper attachments to structures with an allowable load not exceeding one-fourth of failure (proof-test) load.
- D. Install concrete inserts before placing concrete.
- E. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 1. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors according to Division 15 Section "Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

END OF SECTION

SECTION 15820 - DUCT ACCESSORIES

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Manual-volume dampers.
 - 2. Turning vanes.
 - 3. Duct-mounted access doors and panels.
 - 4. Flexible ducts.
 - 5. Flexible connectors.
 - 6. Duct accessory hardware.
- B. Related Sections include the following:
 - 1. Division 15 Section "Air Outlets and Inlets".

1.2 SUBMITTALS

- A. Product Data: For the following:
 - 1. Backdraft dampers.
 - 2. Manual-volume dampers.
 - 3. Smoke dampers.
 - 4. Duct-mounted access doors and panels.
 - 5. Flexible ducts.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loadings, required clearances, method of field assembly, components, location, and size of each field connection. Detail the following:
 - 1. Special fittings and manual- and automatic-volume-damper installations.
 - 2. Smoke damper installations, including sleeves and duct-mounted access doors and panels.
- C. Product Certificates: Submit certified test data on dynamic insertion loss; self-noise power levels; and airflow performance data, static-pressure loss, dimensions, and weights.

1.3 QUALITY ASSURANCE

- A. NFPA Compliance: Comply with the following NFPA standards:
 - 1. NFPA 90A, "Installation of Air Conditioning and Ventilating Systems."
 - 2. NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

1.4 EXTRA MATERIALS

A. Furnish extra materials described below that match products installed, are packaged with protective covering for storage, and are identified with labels describing contents.

PART 2 - PRODUCTS

2.1 SHEET METAL MATERIALS

- A. Galvanized, Sheet Steel: Lock-forming quality; ASTM A 653/A 653M, G90 coating designation; mill-phosphatized finish for surfaces of ducts exposed to view.
- B. Reinforcement Shapes and Plates: Galvanized steel reinforcement where installed on galvanized, sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- C. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for 36-inch length or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.2 MANUAL-VOLUME DAMPERS

- A. General: Factory fabricated with required hardware and accessories. Stiffen damper blades for stability. Include locking device to hold single-blade dampers in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
- B. Standard Volume Dampers: Multiple- or single-blade, parallel- or opposed-blade design as indicated, standard leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.
 - 1. Roll-Formed Steel Blades: 0.064-inch- thick, galvanized, sheet steel.
 - 2. Blade Axles: Galvanized steel.
 - 3. Tie Bars and Brackets: Galvanized steel.
- C. Jackshaft: 1-inch- diameter, galvanized steel pipe rotating within a pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
 - 1. Length and Number of Mountings: Appropriate to connect linkage of each damper of a multiple-damper assembly.
- D. Damper Hardware: Zinc-plated, die-cast core with dial and handle made of 3/32-inch- thick zinc-plated steel, and a 3/4-inch hexagon locking nut. Include center hole to suit damper operating-rod size. Include elevated platform for insulated duct mounting.

2.3 FIRE DAMPERS

- A. General: Labeled to UL 555.
- B. Fire Rating: One and one-half and three hours.

- C. Frame SMACNA Type B with blades out of airstream; fabricated with roll-formed, 0.034-inchthick galvanized steel; with mitered and interlocking corners. Exception stainless steel for Class 2 kitchen exhaust hood.
- D. Mounting Sleeve: Factory-or field-installed galvanized, sheet steel. Exception stainless steel for Class 2 kitchen exhaust hood.
 - 1. Minimum Thickness: 0.052 inch or 0.138 inch thick as indicated, and length to suit application.
 - 2. Exceptions: Omit sleeve where damper frame width permits direct attachment of perimeter mounting angles on each side of wall or floor, and thickness of damper frame complies with sleeve requirements.
- E. Mounting Orientation: Vertical or horizontal as indicated.
- F. Blades: Roll-formed, interlocking, 0.034-inch-thick, galvanized, sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized steel blade connectors.
- G. Horizontal Dampers: Include a blade lock and stainless-steel negator closure spring.
- H. Fusible Link: Replaceable, 165 or 212 deg F rated as indicated.
- I. Manufacturers:
 - 1. Air Balance, Inc.
 - 2. Greenheck
 - 3. Penn Ventilation Company, Inc.
 - 4. CESCO Products
 - 5. Ruskin Company

2.4 TURNING VANES

- A. Fabricate to comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."
- B. Manufactured Turning Vanes: Fabricate of 1-1/2-inch- wide, curved blades set 3/4 inch o.c.; support with bars perpendicular to blades set 2 inches o.c.; and set into side strips suitable for mounting in ducts.
- C. Acoustic Turning Vanes: Fabricate of airfoil-shaped aluminum extrusions with perforated faces and fibrous-glass fill.

2.5 DUCT-MOUNTED ACCESS DOORS AND PANELS

- A. General: Fabricate doors and panels airtight and suitable for duct pressure class.
- B. Frame: Galvanized, sheet steel, with bend-over tabs and foam gaskets.
- C. Door: Double-wall, galvanized, sheet metal construction with insulation fill and thickness, and number of hinges and locks as indicated for duct pressure class. Include 1-by-1-inch butt or piano hinge and cam latches.

- D. Seal around frame attachment to duct and door to frame with neoprene or foam rubber.
- E. Insulation: 1-inch- thick, fibrous-glass or polystyrene-foam board.

2.6 FLEXIBLE CONNECTORS

- A. General: Flame-retarded or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1.
- B. Standard Metal-Edged Connectors: Factory fabricated with a strip of fabric 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized, sheet steel or 0.032-inch aluminum sheets. Select metal compatible with connected ducts.
- C. Conventional, Indoor System Flexible Connector Fabric: Glass fabric double coated with polychloroprene.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 480 lbf/inch in the warp, and 360 lbf/inch in the filling.
- D. Conventional, Outdoor System Flexible Connector Fabric: Glass fabric double coated with a synthetic-rubber, weatherproof coating resistant to the sun's ultraviolet rays and ozone environment.
 - 1. Minimum Weight: 26 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp, and 440 lbf/inch in the filling.

2.7 FLEXIBLE DUCTS

- A. Provide where indicated on drawings Flexmaster TI-M flexible metal UL181 Class 1 Air Duct.
- B. The duct shall be constructed of .005" thick 3003-H14 aluminum alloy in accordance with ASTM.
- C. The duct shall be spiral wound into a tube and spiral corrugated to provide strength and flexibility.
- D. The internal working pressure rating shall be at least 10" w.g. positive and 10" w.g. negative with a bursting pressure of at least 2-1/2 time the working pressure.
- E. The duct shall be rated for a velocity of at least 5500 feet per minute.
- F. The duct must be suitable for continuous operation at a temperature range of -40° F to +250° F.
- G. Factory insulate the flexible duct with fiberglass insulation. The R value shall be at least 4.2 at a mean temperature of 75° F.
- H. Cover the insulation with a fire retardant metalized vapor barrier jacket reinforced with crosshatched scrim having a permeance of not greater than 0.05 perms when tested in accordance with ASTM E96, Procedure A.

I. There shall be a maximum of one (1) 90 degree bend and a maximum length of sic (6) feet.

2.8 ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments, and length to suit duct insulation thickness.
- B. Splitter Damper Accessories: Zinc-plated damper blade bracket; 1/4-inch, zinc-plated operating rod; and a duct-mounted, ball-joint bracket with flat rubber gasket and square-head set screw.
- C. Flexible Duct Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action, in sizes 3 to 18 inches to suit duct size.
- D. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details shown in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and NAIMA's "Fibrous Glass Duct Construction Standards" for fibrous-glass ducts.
- B. Install turning vanes in all return duct mitered elbows.
- C. Install volume dampers in lined duct; avoid damage to and erosion of duct liner.
- D. Provide test holes at fan inlet and outlet and elsewhere as indicated.
- E. Install smoke dampers according to manufacturer's UL-approved written instructions.
- F. Install duct access panels for access to both sides of duct coils. Install duct access panels downstream from volume dampers, fire dampers, turning vanes, and equipment.
 - 1. Install duct access panels to allow access to interior of ducts for cleaning, inspecting, adjusting, and maintaining accessories and terminal units.
 - 2. Install access panels on side of duct where adequate clearance is available.
- G. Label access doors according to Division 15 Section "Mechanical Identification."

3.2 ADJUSTING

- A. Adjust duct accessories for proper settings.
- B. Adjust fire dampers for proper action.

C. Final positioning of manual-volume dampers is specified in Division 15 Section "Testing, Adjusting, and Balancing."

END OF SECTION

SECTION 15932 - AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 **RELATED DOCUMENTS**

Α. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division-1 Specification sections, apply to work of this section.

1.2 DESCRIPTION OF WORK

- Extent of air outlets and inlets work is indicated by drawings and schedules, and by Α. requirements of this section.
- Types of outlets and inlets required for project include the following: Β.
 - 1. Ceiling air diffusers and grilles.
- Refer to other Division-15 sections for ductwork and duct accessories required in conjunction C. with air outlets and inlets: not work of this section.
- D. Refer to other Division-15 sections for balancing of air outlets and inlets; not work of this section.

1.3 QUALITY ASSURANCE

- Α. Manufacturer's Qualifications: Firms regularly engaged in manufacture of air outlets and inlets of types and capacities required, whose products have been in satisfactory use in similar service for not less than 5 years.
- Β. Codes and Standards:
 - ARI Compliance: Test and rate air outlets and inlets in accordance with ARI 650 1. "Standard for Air Outlets and Inlets".
 - ASHRAE Compliance: Test and rate air outlets and inlets in accordance with ASHRAE 2. 70 "Method of Testing for Rating the Air Flow Performance of Outlets and Inlets".
 - 3. ADC Compliance: Test and rate air outlets and inlets in certified laboratories under requirements of ADC 1062 "Certification, Rating and Test Manual".
 - ADC Seal: Provide air outlets and inlets bearing ADC Certified Rating Seal. 4.
 - AMCA Compliance: Test and rate louvers in accordance with AMCA 500 "Test Method 5. for Louvers, Dampers and Shutters".
 - AMCA Seal: Provide louvers bearing AMCA Certified Rating Seal. 6.
 - NFPA Compliance: Install air outlets and inlets in accordance with NFPA 90A "Standard 7. for the Installation of Air Conditioning and Ventilating Systems".

1.4 SUBMITTALS

Α. Product Data: Submit manufacturer's technical product data for air outlets and inlets including the following:

AIR OUTLETS AND INLETS

- 1. Schedule of air outlets and inlets indicating drawing designation, room location, number furnished, model number, size, and accessories furnished.
- 2. Data sheet for each type of air outlet and inlet, and accessory furnished; indicating construction, finish, and mounting details.
- 3. Performance data for each type of air outlet and inlet furnished, including aspiration ability, temperature and velocity traverses; throw and drop; and noise criteria ratings. Indicate selections on data.
- B. Maintenance Data: Submit maintenance data, including cleaning instructions for finishes, and spare parts lists. Include this data, product data, and shop drawings in maintenance manuals; in accordance with requirements of Division 1.

1.5 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Deliver air outlets and inlets wrapped in factory-fabricated fiber-board type containers. Identify on outside of container type of outlet or inlet and location to be installed. Avoid crushing or bending and prevent dirt and debris from entering and settling in devices.
- B. Store air outlets and inlets in original cartons and protect from weather and construction work traffic. Where possible, store indoors; when necessary to store outdoors, store above grade and enclose with waterproof wrapping.

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURER: As specified on Drawings.

INLETS AND OUTLETS SCHEDULE: As specified on Drawings.

PART 3 - EXECUTION

3.1 INSPECTION

B. Examine areas and conditions under which air outlets and inlets are to be installed. Do not proceed with work until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- B. General: Install air outlets and inlets in accordance with manufacturer's written instructions and in accordance with recognized industry practices to insure that products serve intended function.
- C. Coordinate with other work, including ductwork and duct accessories, as necessary to interface installation of air outlets and inlets with other work.
- D. Locate ceiling air diffusers, registers, and grilles, as indicated on general construction "Reflected Ceiling Plans". Unless otherwise indicated, locate units in center of acoustical ceiling module.

AIR OUTLETS AND INLETS

1127 - 09/28/12

3.3 SPARE PARTS

A. Furnish to Owner, with receipt, 3 operating keys for each type of air outlet and inlet that require them.

END OF SECTION

SECTION 15950 - TESTING, ADJUSTING, AND BALANCING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. The TAB agent shall be qualified to perform the desired services and perform testing, adjusting, and balancing procedures, or qualified to perform approved certification according to the procedures contained in the Associated Air Balance Council (AABC) national standards, the National Environmental Balancing Bureau (NEBB) procedural standards, and the Environmental Engineering Consultants (EEC) standards for testing, adjusting and balancing.
- B. This Section includes TAB to produce design objectives for the following:
 - 1. Air Systems:
 - a. Constant-air-volume systems.
 - 2. HVAC equipment quantitative-performance settings.
 - 3. Verifying that automatic control devices are functioning properly.
 - 4. Reporting results of activities and procedures specified in this Section.

1.3 **DEFINITIONS**

- A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper.
- B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities.
- C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants.
- D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated.
- E. NC: Noise criteria.
- F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results.

- G. RC: Room criteria.
- H. Report Forms: Test data sheets for recording test data in logical order.
- I. Static Head: The pressure due to the weight of the fluid above the point of measurement. In a closed system, static head is equal on both sides of the pump.
- J. Suction Head: The height of fluid surface above the centerline of the pump on the suction side.
- K. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
- L. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested.
- M. TAB: Testing, adjusting, and balancing.
- N. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system.
- O. Test: A procedure to determine quantitative performance of systems or equipment.
- P. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures.

1.4 SUBMITTALS

- A. Qualification Data: Within 30 days from Notice to Proceed, submit 4] copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Contract Documents Examination Report: Within 30 days from Contractor's Notice to Proceed, submit 4 copies of the Contract Documents review report as specified in Part 3.
- C. Strategies and Procedures Plan: Within 30 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project.
- D. <u>Certified TAB Reports:</u> Submit four copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm. Submit two copies to the Owner and two copies to the Architect for approval.
- E. <u>If the Architect requires corrections to the TAB report, then the Contractor will make the corrections and resubmit the corrected reports to the Architect and Owner within thirty (30) days, with a cover letter addressing the corrections.</u>
- F. Sample Report Forms: Submit two sets of sample TAB report forms.
- G. Warranties specified in this Section.

H. Submit TAB report in Microsoft Excel or Word or compatible file format burned to a CD, in addition to paper copies, when final corrections are made.

1.5 QUALITY ASSURANCE

- A. TAB Firm Qualifications: TAB firm certified by AABC, NEBB, OR EEC.
- B. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location.
 - 1. Agenda Items: Include at least the following:
 - a. Submittal distribution requirements.
 - b. The Contract Documents examination report.
 - c. TAB plan.
 - d. Work schedule and Project-site access requirements.
 - e. Coordination and cooperation of trades and subcontractors.
 - f. Coordination of documentation and communication flow.
- C. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.
- D. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems.", NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems.", or TAB firm's forms approved by Architect.
- E. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification."
- F. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer.
 - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration.

1.6 **PROJECT CONDITIONS**

1.7 COORDINATION

- A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.
- B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.8 WARRANTY

- A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents.
- B. Special Guarantee: Provide a guarantee on NEBB forms stating that NEBB will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents.
- C. Other contractors, if approved by Architect, shall provide a guarantee equal to that of AABC or NEBB.
- D. Guarantee shall include the following provisions:
 - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents.
 - 2. Systems are balanced to optimum performance capabilities within design and installation limits.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
 - 1. Contract Documents are defined in the General and Supplementary Conditions of Contract.

TESTING, ADJUSTING, AND BALANCING 15950 - 4

- 2. Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flowcontrol devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- B. Examine approved submittal data of HVAC systems and equipment.
- C. Examine Project Record Documents described in Division 1 Section "Project Record Documents."
- D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.
- F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed.
- G. Examine system and equipment test reports.
- H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.
- I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.
- J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning.
- L. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed.
- M. Examine strainers for clean screens and proper perforations.
- N. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.

- O. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- P. Examine system pumps to ensure absence of entrained air in the suction piping.
- Q. Examine equipment for installation and for properly operating safety interlocks and controls.
- R. Examine automatic temperature system components.
- S. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system readiness checks and prepare system readiness reports. Verify the following:
 - 1. Automatic temperature-control systems are operational.
 - 2. Equipment and duct access doors are securely closed.
 - 3. Balance, smoke, and fire dampers are open.
 - 4. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
 - 5. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. TAB contractor shall not perform adjusting and balancing until systems are complete and ready for operation. This includes the building control system.
- B. <u>TAB procedures shall be performed in the presence of the Owner's representatives.</u>
- C. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems", or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.
- D. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project.
- E. <u>Mark equipment and balancing device settings with paint or other suitable, permanent</u> <u>identification material, including damper-control positions, valve position indicators, fan-speed</u> <u>control levers, and similar controls and devices, to show final settings.</u>
- F. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.
- C. For variable-air-volume systems, develop a plan to simulate diversity.
- D. Determine the best locations in main and branch ducts for accurate duct airflow measurements.
- E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.
- F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- G. Verify that motor starters are equipped with properly sized thermal protection.
- H. Check dampers for proper position to achieve desired airflow path.
- I. Check for airflow blockages.
- J. Check condensate drains for proper connections and functioning.
- K. Check for proper sealing of air-handling unit components.
- L. Check for proper sealing of air duct system.

3.5 TEMPERATURE-CONTROL VERIFICATION

- A. Verify that controllers are calibrated and commissioned.
- B. Check transmitter and controller locations and note conditions that would adversely affect control functions.
- C. Record controller settings and note variances between set points and actual measurements.
- D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).
- E. Check free travel and proper operation of control devices such as damper and valve operators.
- F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.
- G. Check the interaction of electrically operated switch transducers.
- H. Check the interaction of interlock and lockout systems.
- I. Check main control supply-air pressure and observe compressor and dryer operations.

- J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.
- K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.6 TOLERANCES

- A. Set HVAC system airflow and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 10 to minus 10 percent.
 - 2. Air Outlets and Inlets: Plus 10 to minus 10 percent.

3.7 REPORTING

- A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.
- B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.8 FINAL REPORT

- A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems.
- B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.
 - 1. Include a list of instruments used for procedures, along with proof of calibration.
- C. Final Report Contents: In addition to certified field report data, include the following:
 - 1. Manufacturers' test data.
 - 2. Field test reports prepared by system and equipment installers.
 - 3. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.
- D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:
 - 1. Title page.
 - 2. Name and address of TAB firm.
 - 3. Project name.
 - 4. Project location.

TESTING, ADJUSTING, AND BALANCING 15950 - 8

- 5. Architect/Engineer's name and address.
- 6. Contractor's name and address.
- 7. Report date.
- 8. Signature of TAB firm who certifies the report.
- 9. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 10. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 11. Nomenclature sheets for each item of equipment.
- 12. Data for terminal units, including manufacturer, type size, and fittings.
- 13. Notes to explain why certain final data in the body of reports varies from indicated values.
- E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outside, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Balancing stations.
 - 5. Position of balancing devices.
 - 6. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Return airflow in cfm.
 - g. Return-air damper position.
 - 7. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outside-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
- F. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling unit number.
 - b. Location and zone.

- c. Traverse air temperature in deg F.
- d. Duct static pressure in inches wg.
- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated airflow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.
- G. Air-Terminal-Device Reports:
 - 1. Unit Data:
 - a. System and air-handling unit identification.
 - b. Location and zone.
 - c. Test apparatus used.
 - d. Area served.
 - e. Air-terminal-device make.
 - f. Air-terminal-device number from system diagram.
 - g. Air-terminal-device type and model number.
 - h. Air-terminal-device size.
 - i. Air-terminal-device effective area in sq. ft..
 - 2. Test Data (Indicated and Actual Values):
 - a. Airflow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary airflow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final airflow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- H. Instrument Calibration Reports:
 - 1. Report Data:
 - a. Instrument type and make.
 - b. Serial number.
 - c. Application.
 - d. Dates of use.
 - e. Dates of calibration.

3.9 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report.
 - 2. Randomly check the following for each system:

TESTING, ADJUSTING, AND BALANCING 15950 - 10

- a. Measure airflow of at least 10 percent of air outlets.
- b. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
- c. Measure space pressure of at least 10 percent of locations.
- d. Verify that balancing devices are marked with final balance position.
- e. Note deviations to the Contract Documents in the Final Report.

3.10 ADDITIONAL TESTS

A. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION

SECTION 16050 - BASIC ELECTRICAL MATERIALS AND METHODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Supporting devices for electrical components.
 - 2. Cutting and patching for electrical construction.
 - 3. Touchup painting.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. IMC: Intermediate metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Field Test Reports: Indicate and interpret test results for compliance with performance requirements.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

1.6 COORDINATION

BASIC ELECTRICAL MATERIALS AND METHODS

- A. Coordinate chases, slots, inserts, sleeves, and openings with general construction work and arrange in building structure during progress of construction to facilitate the electrical installations that follow.
 - 1. Set inserts and sleeves in poured-in-place concrete, masonry work, and other structural components as they are constructed.
- B. Sequence, coordinate, and integrate installing electrical materials and equipment for efficient flow of the Work. Coordinate installing large equipment requiring positioning before closing in the building.
- C. Sequence, coordinate, and integrate installing and connecting electrical materials and equipment furnished by other division contractors whether indicated on contract drawings or not.
- D. Coordinate location of access panels and doors for electrical items that are concealed by finished surfaces. Access doors and panels are specified in Division 8 Section "Access Doors."
- E. Coordinate all electrical outages, disconnection of existing electrical systems, removal of existing equipment with owner and all disciplines. Refer to Specification Section 01230 for "Add/Deduct Alternate for Salvaging Metal Demolition Debris".

PART 2 - PRODUCTS

2.1 SUPPORTING DEVICES

- A. Material: Cold-formed steel, with corrosion-resistant coating acceptable to authorities having jurisdiction.
- B. Metal Items for Use Outdoors or in Damp Locations: Hot-dip galvanized steel.
- C. Slotted-Steel Channel Supports: Flange edges turned toward web, and 9/16-inch- diameter slotted holes at a maximum of 2 inches o.c., in webs.
- D. Raceway and Cable Supports: Manufactured clevis hangers, riser clamps, straps, threaded Cclamps with retainers, ceiling trapeze hangers, wall brackets, and spring-steel clamps or clicktype hangers.
- E. Pipe Sleeves: ASTM A 53, Type E, Grade A, Schedule 40, galvanized steel, plain ends.
- F. Cable Supports for Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug for non-armored electrical cables in riser conduits. Plugs have number and size of conductor gripping holes as required to suit individual risers. Body constructed of malleable-iron casting with hot-dip galvanized finish.
- G. Expansion Anchors: Carbon-steel wedge or sleeve type.
- H. Toggle Bolts: All-steel springhead type.
- I. Powder-Driven Threaded Studs: Heat-treated steel.

2.2 TOUCHUP PAINT

- A. For Equipment: Equipment manufacturer's paint selected to match installed equipment finish.
- B. Galvanized Surfaces: Zinc-rich paint recommended by item manufacturer.

PART 3 - EXECUTION

3.1 ELECTRICAL EQUIPMENT INSTALLATION

- A. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide the maximum possible headroom.
- B. Materials and Components: Install level, plumb, and parallel and perpendicular to other building systems and components, unless otherwise indicated.
- C. Equipment: Install to facilitate service, maintenance, and repair or replacement of components. Connect for ease of disconnecting, with minimum interference with other installations.
- D. Right of Way: Give to raceways and piping systems installed at a required slope.

3.2 ELECTRICAL SUPPORTING DEVICE APPLICATION

- A. Damp Locations and Outdoors: Hot-dip galvanized materials or nonmetallic, U-channel system components.
- B. Dry Locations: Steel materials.
- C. Support Clamps for PVC Raceways: Click-type clamp system.
- D. Selection of Supports: Comply with manufacturer's written instructions.
- E. Strength of Supports: Adequate to carry present and future loads, times a safety factor of at least four; minimum of 200-lb design load.

3.3 SUPPORT INSTALLATION

- A. Install support devices to securely and permanently fasten and support electrical components.
- B. Install individual and multiple raceway hangers and riser clamps to support raceways. Provide U-bolts, clamps, attachments, and other hardware necessary for hanger assemblies and for securing hanger rods and conduits.
- C. Support parallel runs of horizontal raceways together on trapeze- or bracket-type hangers.
- D. Size supports for multiple raceway installations so capacity can be increased by a 25 percent minimum in the future.

- E. Support individual horizontal raceways with separate, malleable-iron pipe hangers or clamps.
- F. Install 1/4-inch- diameter or larger threaded steel hanger rods, unless otherwise indicated.
- G. Spring-steel fasteners specifically designed for supporting single conduits or tubing may be used instead of malleable-iron hangers for 1-1/2-inch and smaller raceways serving lighting and receptacle branch circuits above suspended ceilings and for fastening raceways to slotted channel and angle supports.
- H. Arrange supports in vertical runs so the weight of raceways and enclosed conductors is carried entirely by raceway supports, with no weight load on raceway terminals.
- I. Simultaneously install vertical conductor supports with conductors.
- J. Separately support cast boxes that are threaded to raceways and used for fixture support. Support sheet-metal boxes directly from the building structure or by bar hangers. If bar hangers are used, attach bar to raceways on opposite sides of the box and support the raceway with an approved fastener not more than 24 inches from the box.
- K. Install metal channel racks for mounting cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices unless components are mounted directly to structural elements of adequate strength.
- L. Install sleeves for cable and raceway penetrations of concrete slabs and walls unless coredrilled holes are used. Install sleeves for cable and raceway penetrations of masonry and firerated gypsum walls and of all other fire-rated floor and wall assemblies. Install sleeves during erection of concrete and masonry walls.
- M. Securely fasten electrical items and their supports to the building structure, unless otherwise indicated. Perform fastening according to the following unless other fastening methods are indicated:
 - 1. Wood: Fasten with wood screws or screw-type nails.
 - 2. Masonry: Toggle bolts on hollow masonry units and expansion bolts on solid masonry units.
 - 3. New Concrete: Concrete inserts with machine screws and bolts.
 - 4. Existing Concrete: Expansion bolts.
 - 5. Instead of expansion bolts, threaded studs driven by a powder charge and provided with lock washers may be used in existing concrete.
 - 6. Steel: Welded threaded studs or spring-tension clamps on steel.
 - a. Field Welding: Comply with AWS D1.1.
 - 7. Welding to steel structure may be used only for threaded studs, not for conduits, pipe straps, or other items.
 - 8. Light Steel: Sheet-metal screws.
 - 9. Fasteners: Select so the load applied to each fastener does not exceed 25 percent of its proof-test load.

3.4 FIRESTOPPING

A. Provide firestopping to cable and raceway penetrations of fire-rated floor and wall assemblies to achieve fire-resistance rating of the assembly. Firestopping materials and installation requirements are specified in Division 7 Section "Firestopping."

3.5 CUTTING AND PATCHING

- A. Cut, channel, chase, and drill floors, walls, partitions, ceilings, and other surfaces required to permit electrical installations. Perform cutting by skilled mechanics of trades involved.
- B. Repair and refinish disturbed finish materials and other surfaces to match adjacent undisturbed surfaces. Install new fireproofing where existing firestopping has been disturbed. Repair and refinish materials and other surfaces by skilled mechanics of trades involved.

3.6 FIELD QUALITY CONTROL

- A. Inspect installed components for damage and faulty work, including the following:
 - 1. Supporting devices for electrical components.
 - 2. Concrete bases.
 - 3. Cutting and patching for electrical construction.
 - 4. Touchup painting.

3.7 REFINISHING AND TOUCHUP PAINTING

- A. Refinish and touch up paint. Paint materials and application requirements are specified in Division 9 Section "Painting."
 - 1. Clean damaged and disturbed areas and apply primer, intermediate, and finish coats to suit the degree of damage at each location.
 - 2. Follow paint manufacturer's written instructions for surface preparation and for timing and application of successive coats.
 - 3. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 4. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.8 CLEANING AND PROTECTION

- A. On completion of installation, including outlets, fittings, and devices, inspect exposed finish. Remove burrs, dirt, paint spots, and construction debris.
- B. Protect equipment and installations and maintain conditions to ensure that coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.

END OF SECTION

SECTION 16060 - GROUNDING AND BONDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes grounding of electrical systems and equipment. Grounding requirements specified in this Section may be supplemented by special requirements of systems described in other Sections.

1.3 SUBMITTALS

- A. Field Test Reports: Submit written test reports to include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
 - 1. Comply with UL 467.
- B. Comply with NFPA 70; for overhead-line construction and medium-voltage underground construction, comply with IEEE C2.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Grounding Conductors, Cables, Connectors, and Rods:

- a. Apache Grounding/Erico Inc.
- b. Boggs, Inc.
- c. Chance/Hubbell.
- d. Copperweld Corp.
- e. Dossert Corp.
- f. Erico Inc.; Electrical Products Group.
- g. Framatome Connectors/Burndy Electrical.
- h. Galvan Industries, Inc.
- i. Harger Lightning Protection, Inc.
- j. Hastings Fiber Glass Products, Inc.
- k. Heary Brothers Lightning Protection Co.
- I. Ideal Industries, Inc.
- m. ILSCO.
- n. Kearney/Cooper Power Systems.
- o. Korns: C. C. Korns Co.; Division of Robroy Industries.
- p. Lightning Master Corp.
- q. Lyncole XIT Grounding.
- r. O-Z/Gedney Co.; a business of the EGS Electrical Group.
- s. Raco, Inc.; Division of Hubbell.
- t. Robbins Lightning, Inc.
- u. Salisbury: W. H. Salisbury & Co.
- v. Superior Grounding Systems, Inc.
- w. Thomas & Betts, Electrical.

2.2 GROUNDING CONDUCTORS

- A. For insulated conductors, comply with Division 16 Section "Conductors and Cables."
- B. Material: Copper.
- C. Equipment Grounding Conductors: Insulated with green-colored insulation.
- D. Isolated Ground Conductors: Insulated with green-colored insulation with yellow stripe. On feeders with isolated ground, use colored tape, alternating bands of green and yellow tape to provide a minimum of three bands of green and two bands of yellow.
- E. Grounding Electrode Conductors: Stranded cable.
- F. Underground Conductors: Bare, tinned, stranded, unless otherwise indicated.
- G. Bare Copper Conductors: Comply with the following:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Assembly of Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
- H. Copper Bonding Conductors: As follows:
 - 1. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG copper conductor, 1/4 inch in diameter.
 - 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded copper conductor.

- 3. Bonding Jumper: Bare copper tape, braided bare copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- 4. Tinned Bonding Jumper: Tinned-copper tape, braided copper conductors, terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- I. Grounding Bus: Bare, annealed copper bars of rectangular cross section, with insulators.

2.3 CONNECTOR PRODUCTS

- A. Comply with IEEE 837 and UL 467; listed for use for specific types, sizes, and combinations of conductors and connected items.
- B. Bolted Connectors: Bolted-pressure-type connectors, or compression type.
- C. Welded Connectors: Exothermic-welded type, in kit form, and selected per manufacturer's written instructions.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Use only copper conductors for both insulated and bare grounding conductors in direct contact with earth, concrete, masonry, crushed stone, and similar materials.
- B. In raceways, use insulated equipment grounding conductors.
- C. Exothermic-Welded Connections: Use for connections to structural steel and for underground connections.
- D. Equipment Grounding Conductor Terminations: Use bolted pressure clamps.
- E. Underground Grounding Conductors: Use tinned-copper conductor, No. 2/0 AWG minimum. Bury at least 24 inches below grade or bury 12 inches above duct bank when installed as part of the duct bank.

3.2 EQUIPMENT GROUNDING CONDUCTORS

- A. Comply with NFPA 70, Article 250, for types, sizes, and quantities of equipment grounding conductors, unless specific types, larger sizes, or more conductors than required by NFPA 70 are indicated.
- B. Install equipment grounding conductors in all feeders and branch circuits.
- C. Isolated Grounding Receptacle Circuits: Install an insulated equipment grounding conductor connected to the receptacle grounding terminal. Isolate grounding conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service, unless otherwise indicated.

- D. Nonmetallic Raceways: Install an equipment grounding conductor in nonmetallic raceways unless they are designated for telephone or data cables.
- E. Air-Duct Equipment Circuits: Install an equipment grounding conductor to duct-mounted electrical devices operating at 120 V and more, including air cleaners and heaters. Bond conductor to each unit and to air duct.
- F. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate equipment grounding conductor to each electric water heater, heat-tracing, and antifrost heating cable. Bond conductor to heater units, piping, connected equipment, and components.
- G. Signal and Communication Systems: For telephone, alarm, voice and data, and other communication systems, provide No. 4 AWG minimum insulated grounding conductor in raceway from grounding electrode system to each service location, terminal cabinet, wiring closet, and central equipment location.
 - 1. Service and Central Equipment Locations and Wiring Closets: Terminate grounding conductor on a 1/4-by-2-by-24-inch grounding bus.
 - 2. Terminal Cabinets: Terminate grounding conductor on cabinet grounding terminal.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible, unless otherwise indicated. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install so vibration by equipment mounted on vibration isolation hangers and supports is not transmitted to rigidly mounted equipment. Use exothermic-welded connectors for outdoor locations, unless a disconnect-type connection is required; then, use a bolted clamp. Bond straps directly to the basic structure taking care not to penetrate any adjacent parts. Install straps only in locations accessible for maintenance.
- C. Metal Water Service Pipe: Provide insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes by grounding clamp connectors. Where a dielectric main water fitting is installed, connect grounding conductor to street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- D. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with grounding clamp connectors.
- E. Bond interior metal piping systems and metal air ducts to equipment grounding conductors of associated pumps, fans, blowers, electric heaters, and air cleaners. Use braided-type bonding straps.
- F. Bond each aboveground portion of gas piping system upstream from equipment shutoff valve.

3.4 CONNECTIONS

- A. General: Make connections so galvanic action or electrolysis possibility is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact will be galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer to order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.
- B. Exothermic-Welded Connections: Comply with manufacturer's written instructions. Welds that are puffed up or that show convex surfaces indicating improper cleaning are not acceptable.
- C. Equipment Grounding Conductor Terminations: For No. 8 AWG and larger, use pressure-type grounding lugs. No. 10 AWG and smaller grounding conductors may be terminated with winged pressure-type connectors.
- D. Noncontact Metal Raceway Terminations: If metallic raceways terminate at metal housings without mechanical and electrical connection to housing, terminate each conduit with a grounding bushing. Connect grounding bushings with a bare grounding conductor to grounding bus or terminal in housing. Bond electrically noncontinuous conduits at entrances and exits with grounding bushings and bare grounding conductors, unless otherwise indicated.
- E. Tighten screws and bolts for grounding and bonding connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A.
- F. Compression-Type Connections: Use hydraulic compression tools to provide correct circumferential pressure for compression connectors. Use tools and dies recommended by connector manufacturer. Provide embossing die code or other standard method to make a visible indication that a connector has been adequately compressed on grounding conductor.
- G. Moisture Protection: If insulated grounding conductors are connected to ground rods or grounding buses, insulate entire area of connection and seal against moisture penetration of insulation and cable.

3.5 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing:
 - 1. After installing grounding system but before permanent electrical circuitry has been energized, test for compliance with requirements.
 - 2. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal. Measure ground resistance not less than two full days after the last trace of precipitation, and without the soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance. Perform tests, by the fall-of-potential method according to IEEE 81.

- 3. Provide drawings locating each ground rod and ground rod assembly and other grounding electrodes, identify each by letter in alphabetical order, and key to the record of tests and observations. Include the number of rods driven and their depth at each location and include observations of weather and other phenomena that may affect test results. Describe measures taken to improve test results.
 - a. Equipment Rated 500 kVA and Less: 10 ohms.
 - b. Equipment Rated 500 to 1000 kVA: 5 ohms.
 - c. Equipment Rated More Than 1000 kVA: 3 ohms.
- 4. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

SECTION 16075 - ELECTRICAL IDENTIFICATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes electrical identification materials and devices required to comply with ANSI C2, NFPA 70, OSHA standards, and authorities having jurisdiction.

1.3 SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Related sections include the following:
 - 1. Division 16 Section "Wiring Devices" for electrical identification of switch and receptacle wiring devices.

1.4 QUALITY ASSURANCE

- A. Comply with ANSI C2.
- B. Comply with NFPA 70.
- C. Comply with ANSI A13.1 and NFPA 70 for color-coding.

PART 2 - PRODUCTS

2.1 RACEWAY AND CABLE LABELS

- A. Comply with ANSI A13.1, Table 3, for minimum size of letters for legend and for minimum length of color field for each raceway and cable size.
 - 1. Color: Black letters on orange field.
 - 2. Legend: Indicates voltage.
- B. Adhesive Labels: Preprinted, flexible, self-adhesive vinyl with legend over-laminated with a clear, weather- and chemical-resistant coating.

- C. Pretensioned, Wraparound Plastic Sleeves: Flexible, preprinted, color-coded, acrylic band sized to suit the diameter of the line it identifies and arranged to stay in place by pretensioned gripping action when placed in position.
- D. Colored Adhesive Tape: Self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
- E. Underground-Line Warning Tape: Permanent, bright-colored, continuous-printed, vinyl tape.
 - 1. Not less than 6 inches wide by 4 mils thick.
 - 2. Compounded for permanent direct-burial service.
 - 3. Embedded continuous metallic strip or core.
 - 4. Printed legend indicating type of underground line.
- F. Tape Markers: Vinyl or vinyl-cloth, self-adhesive, wraparound type with preprinted numbers and letters.
- G. Aluminum, Wraparound Marker Bands: Bands cut from 0.014-inch- thick aluminum sheet, with stamped or embossed legend, and fitted with slots or ears for permanently securing around wire or cable jacket or around groups of conductors.
- H. Plasticized Card-Stock Tags: Vinyl cloth with preprinted and field-printed legends. Orange background, unless otherwise indicated, with eyelet for fastener.
- I. Aluminum-Faced, Card-Stock Tags: Weather-resistant, 18-point minimum card stock faced on both sides with embossable aluminum sheet, 0.002 inch thick, laminated with moisture-resistant acrylic adhesive, punched for fasteners, and preprinted with legends to suit each application.

2.2 NAMEPLATES AND SIGNS

- A. Safety Signs: Comply with 29 CFR, Chapter XVII, Part 1910.145.
- B. Engraved Plastic Nameplates and Signs: Engraving stock, melamine plastic laminate, minimum 1/16 inch thick for signs up to 20 sq. in. and 1/8 inch thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
- C. Baked-Enamel Signs for Interior Use: Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for the application. 1/4-inch grommets in corners for mounting.
- D. Exterior, Metal-Backed, Butyrate Signs: Weather-resistant, nonfading, preprinted, celluloseacetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for the application. 1/4-inch grommets in corners for mounting.
- E. Fasteners for Nameplates and Signs: Self-tapping, stainless-steel screws or No. 10/32, stainless-steel machine screws with nuts and flat and lock washers.

2.3 MISCELLANEOUS IDENTIFICATION PRODUCTS

ELECTRICAL IDENTIFICATION 16075

- Cable Ties: Fungus-inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon cable ties. Α.
 - 1. Minimum Width: 3/16 inch.
 - Tensile Strength: 50 lb minimum. 2.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - Color: According to color-coding. 4.
- Β. Paint: Formulated for the type of surface and intended use.
 - 1. Primer for Galvanized Metal: Single-component acrylic vehicle formulated for galvanized surfaces.
 - 2. Primer for Concrete Masonry Units: Heavy-duty-resin block filler.
 - Primer for Concrete: Clear, alkali-resistant, binder-type sealer. 3.
 - Enamel: Silicone-alkyd or alkyd urethane as recommended by primer manufacturer. 4.

PART 3 - EXECUTION

3.1 INSTALLATION

- Α. Identification Materials and Devices: Install at locations for most convenient viewing without interference with operation and maintenance of equipment.
- Lettering, Colors, and Graphics: Coordinate names, abbreviations, colors, and other designa-Β. tions with corresponding designations in the Contract Documents or with those required by codes and standards. Use consistent designations throughout Project.
- C. Sequence of Work: If identification is applied to surfaces that require finish, install identification after completing finish work.
- Self-Adhesive Identification Products: Clean surfaces before applying. D.
- Ε. Install painted identification according to manufacturer's written instructions and as follows:
 - 1. Clean surfaces of dust, loose material, and oily films before painting.
 - 2. Prime surfaces using type of primer specified for surface.
 - 3. Apply one intermediate and one finish coat of enamel.
- Color Banding Raceways and Exposed Cables: Band exposed and accessible raceways of the F. systems listed below:
 - Bands: Pretensioned, wraparound plastic sleeves; colored adhesive tape; or a combina-1. tion of both. Make each color band 2 inches wide, completely encircling conduit, and place adjacent bands of two-color markings in contact, side by side.
 - Band Locations: At changes in direction, at penetrations of walls and floors, at 50-foot 2. maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas. 3.
 - Apply the following colors to the systems listed below:
 - Fire Alarm System: Red. a.
 - Fire-Suppression Supervisory and Control System: Red and yellow. b.
 - Combined Fire Alarm and Security System: Red and blue. c.
 - Security System: Blue and yellow. d.

- e. Mechanical and Electrical Supervisory System: Green and blue.
- f. Telecommunication System: Green and yellow.
- G. Caution Labels for Indoor Boxes and Enclosures for Power and Lighting: Install pressuresensitive, self-adhesive labels identifying system voltage with black letters on orange background. Install on exterior of door or cover.
- H. Circuit Identification Labels on Boxes: Install labels externally.
 - 1. Exposed Boxes: Pressure-sensitive, self-adhesive plastic label on receptacle and box covers.
 - 2. Concealed Boxes: Pressure-sensitive, self-adhesive plastic label on receptacle and box covers.
 - 3. Labeling Legend: Permanent, waterproof listing of panel and circuit number or equivalent.
- I. Paths of Underground Electrical Lines: During trench backfilling, for exterior underground power, control, signal, and communication lines, install continuous underground plastic line marker located directly above line at 6 to 8 inches below finished grade. Where width of multiple lines installed in a common trench or concrete envelope does not exceed 16 inches overall, use a single line marker. Install line marker for underground wiring, both direct-buried cables and cables in raceway.
- J. Color-Coding of Secondary Phase Conductors: Use the following colors for service feeder and branch-circuit phase conductors:
 - 1. 208/120-V Conductors:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 2. 480/277-V Conductors:
 - a. Phase A: Brown
 - b. Phase B: Orange
 - c. Phase C: Yellow
 - 3. Factory apply color the entire length of conductors, except the following field-applied, color-coding methods may be used instead of factory-coded wire for sizes larger than No. 10 AWG:
 - a. Colored, pressure-sensitive plastic tape in half-lapped turns for a distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Use 1-inchwide tape in colors specified. Adjust tape bands to avoid obscuring cable identification markings.
 - b. Colored cable ties applied in groups of three ties of specified color to each wire at each terminal or splice point starting 3 inches from the terminal and spaced 3 inches apart. Apply with a special tool or pliers, tighten to a snug fit, and cut off excess length.

- K. Power Circuit Identification: Metal tags or aluminum, wraparound marker bands for cables, feeders, and power circuits in vaults, pull and junction boxes, manholes, and switchboard rooms.
 - 1. Legend: ¼-inch-steel letter and number stamping or embossing with legend corresponding to indicated circuit designations.
 - 2. Tag Fasteners: Nylon cable ties.
 - 3. Band Fasteners: Integral ears.
- L. Apply identification to conductors as follows:
 - 1. Conductors to Be Extended in the Future: Indicate source and circuit numbers.
 - 2. Multiple Power or Lighting Circuits in the Same Enclosure: Identify each conductor with source, voltage, circuit number, and phase. Use color-coding to identify circuits' voltage and phase.
 - 3. Multiple Control and Communication Circuits in the Same Enclosure: Identify each conductor by its system and circuit designation. Use a consistent system of tags, colorcoding, or cable marking tape.
- M. Apply warning, caution, and instruction signs as follows:
 - 1. Warnings, Cautions, and Instructions: Install to ensure safe operation and maintenance of electrical systems and of items to which they connect. Install engraved plastic-laminated instruction signs with approved legend where instructions are needed for system or equipment operation. Install metal-backed butyrate signs for outdoor items.
- N. Equipment Identification Labels: Engraved plastic laminate. Install on each unit of equipment, including central or master unit of each system. This includes power, lighting, communication, signal, and alarm systems, unless units are specified with their own self-explanatory identification. Unless otherwise indicated, provide a single line of text with 1/2-inch- high lettering on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high. Use white lettering on black field. Apply labels for each unit of the following categories of equipment using mechanical fasteners:
 - 1. Panelboards, electrical cabinets, and enclosures.
 - 2. Electrical switchgear and switchboards.
 - 3. Emergency system boxes and enclosures.
 - 4. Disconnect switches.
 - 5. Enclosed circuit breakers.
 - 6. Motor starters.
 - 7. Push-button stations.
 - 8. Contactors.
 - 9. Remote-controlled switches.
 - 10. Dimmers.
 - 11. Control devices.
 - 12. Transformers.
 - 13. Fire alarm master station or control panel.
 - 14. Amplifier racks.

SECTION 16120 - CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes building wires and cables and associated connectors, splices, and terminations for wiring systems rated 600 V and less.

1.3 SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Field Quality-Control Test Reports: From Contractor.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NFPA 70.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers:
 - 1. American Insulated Wire Corp.; a Leviton Company.
 - 2. General Cable Corporation.
 - 3. Senator Wire & Cable Company.
 - 4. Southwire Company.
- B. Refer to Part 3 "Conductor and Insulation Applications" Article for insulation type, cable construction, and ratings.
- C. Conductor Material: Copper complying with NEMA WC 5; solid or stranded conductor for No. 10 AWG and smaller, stranded for No. 8 AWG and larger.

- D. Conductor Insulation Types: Type THHN-THWN, XHHW, complying with NEMA WC 5.
- E. Multi-conductor Cable: Type SO, with ground wire.
- F. Mineral Insulated Cables with solid copper conductors.

2.2 CONNECTORS AND SPLICES

- A. Available Manufactures:
 - 1. AFC Cable Systems, Inc.
 - 2. AMP Incorporated/Tyco International.
 - 3. Hubbell/Anderson.
 - 4. O-Z/Gedney; EGS Electrical Group LLC.
 - 5. 3M Company; Electrical Products Division.
 - 6. General Cable Corp.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.

PART 3 - EXECUTION

3.1 CONDUCTOR AND INSULATION APPLICATIONS

- A. Service Entrance: Type THHN-THWN, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and in Crawlspaces: Type THHN-THWN, single conductors in raceway.
- E. Exposed Branch Circuits, including in Crawlspaces: Type THHN-THWN, single conductors in raceway
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN, single conductors in raceway
- G. Branch Circuits Concealed in Concrete and below Slabs-on-Grade: Type THHN-THWN, single conductors in raceway.
- H. Branch Circuits Installed below Raised Flooring: Metal-clad cable, Type MC with modular wiring connectors.
- I. Cord Drops and Portable Appliance Connections: Type SO, hard service cord.
- J. Fire Alarm Circuits: Type THHN-THWN, in raceway

- K. Class 1 Control Circuits: Type THHN-THWN, in raceway.
- L. Class 2 Control Circuits: Type THHN-THWN, in raceway, Power-limited cable, Power-limited tray cable, in cable tray.
- M. Fire pump feeders: 2 hour fire rated mineral insulated (MI) cables and connectors as manufactured by General Cable Corp. Pyrotenax Brand - System 1850 or approved equal. Size all feeders per the requirements of NFPA-20 and NEC-Article 695 based on the load requirements of the fire pumps supplied by the manufacturer.
- N. Flexible Whips to Luminaires: Metal-Clad Cable, Type MC or flexible conduit **in lengths not to exceed six feet** concealed above ceiling. MC Cable shall not be used in lengths exceeding six feet or for daisy-chaining luminaries.
- O. Type MC Cable shall not be utilized as a general wiring method in lieu of conduit or raceway except as specified above and as part of the manufactured wiring system (Modular Wiring) installed below the raised access flooring.

3.2 INSTALLATION

- A. Conceal conduit and cables in finished walls, ceilings, and floors, unless otherwise indicated.
- B. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- C. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- D. Install exposed conduit and cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.
- E. Support cables according to Division 16 Section "Basic Electrical Materials and Methods."
- F. Seal around cables penetrating fire-rated elements according to Division 7 Section "Through-Penetration Firestop Systems."
- G. Identify and color-code conductors and cables according to Division 16 Section Electrical Identification."
- H. Sharing of neutrals is not acceptable.
- I. Neutrals shall be same size as phase wires unless indicated otherwise.
- J. Provide silicone filled wire nuts for conductor connections in wet or damp areas, including kitchen and dishwashing areas.
- K. Support fire pump feeder MI Cabling per the manufacturer's and NFPA-NEC requirements at not more than 3'-0" on center.

3.3 CONNECTIONS

CONDUCTORS AND CABLES 16120 - 3

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.
- B. Make splices and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 12 inches of slack.

3.4 FIELD QUALITY CONTROL

- A. Testing: Perform the following field quality-control testing:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test for compliance with requirements.
 - 2. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.3.1. Certify compliance with test parameters.
- B. Test Reports: Prepare a written report to record the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Test results that do not comply with requirements and corrective action taken to achieve compliance with requirements.

SECTION 16130 - RACEWAYS AND BOXES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes raceways, fittings, boxes, enclosures, and cabinets for electrical wiring.
- B. Related Sections include the following:
 - 1. Division 7 Section "Through-Penetration Firestop Systems" for firestopping materials and installation at penetrations through walls, ceilings, and other fire-rated elements.
 - 2. Division 16 Section "Basic Electrical Materials and Methods" for supports, anchors, and identification products.
 - 3. Division 16 Section "Wiring Devices" for devices installed in boxes and for floor-box flush service fittings.
 - 4. Division 16 Section "Electrical Identification" for raceway, box and cable labels.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. FMC: Flexible metal conduit.
- C. IMC: Intermediate metal conduit.
- D. LFMC: Liquidtight flexible metal conduit.
- E. RNC: Rigid nonmetallic conduit.

1.4 SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

1.5 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. B. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified.

2.2 METAL CONDUIT AND TUBING

- A. Manufacturers:
 - 1. AFC Cable Systems, Inc.
 - 2. Alflex Inc.
 - 3. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 4. Electri-Flex Co.
 - 5. Grinnell Co./Tyco International; Allied Tube and Conduit Div.
 - 6. LTV Steel Tubular Products Company.
 - 7. Manhattan/CDT/Cole-Flex.
 - 8. O-Z Gedney; Unit of General Signal.
 - 9. Wheatland Tube Co.
- B. Rigid Steel Conduit: ANSI C80.1.
- C. IMC: ANSI C80.6.
- D. EMT and Fittings: ANSI C80.3.
 - 1. Fittings: Set-screw type.
- E. FMC: Zinc-coated steel.
- F. LFMC: Flexible steel conduit with PVC jacket.
- G. Fittings: NEMA FB 1; compatible with conduit and tubing materials.

2.3 NONMETALLIC CONDUIT AND TUBING

- A. Manufacturers:
 - 1. American International.
 - 2. Anamet Electrical, Inc.; Anaconda Metal Hose.
 - 3. Arnco Corp.
 - 4. Cantex Inc.
 - 5. Certainteed Corp.; Pipe & Plastics Group.
 - 6. Condux International.
 - 7. ElecSYS, Inc.
 - 8. Electri-Flex Co.
 - 9. Lamson & Sessions; Carlon Electrical Products.
 - 10. Manhattan/CDT/Cole-Flex.
 - 11. RACO; Division of Hubbell, Inc.
 - 12. Spiralduct, Inc./AFC Cable Systems, Inc.
 - 13. Thomas & Betts Corporation.
- B. RNC: NEMA TC 2, Schedule 40 and Schedule 80 PVC.
- C. RNC Fittings: NEMA TC 3; match to conduit or tubing type and material.

2.4 METAL WIREWAYS

- A. Manufacturers:
 - 1. Hoffman.
 - 2. Square D.
- B. Material and Construction: Sheet metal sized and shaped as indicated, NEMA 1.
- C. Fittings and Accessories: Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Select features, unless otherwise indicated, as required to complete wiring system and to comply with NFPA 70.
- E. Wireway Covers: Hinged type.
- F. Finish: Manufacturer's standard enamel finish.

2.5 SURFACE RACEWAYS

- A. Surface Metal Raceways: Galvanized steel with snap-on covers. Manufacturer's standard enamel finish. Color selected by Architect.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Thomas & Betts Corporation.

RACEWAYS AND BOXES

- b. Walker Systems, Inc.; Wiremold Company (The).
- c. Wiremold Company (The); Electrical Sales Division.

2.6 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers:
 - 1. Cooper Crouse-Hinds; Div. of Cooper Industries, Inc.
 - 2. Emerson/General Signal; Appleton Electric Company.
 - 3. Erickson Electrical Equipment Co.
 - 4. Hoffman.
 - 5. Hubbell, Inc.; Killark Electric Manufacturing Co.
 - 6. O-Z/Gedney; Unit of General Signal.
 - 7. RACO; Division of Hubbell, Inc.
 - 8. Robroy Industries, Inc.; Enclosure Division.
 - 9. Scott Fetzer Co.; Adalet-PLM Division.
 - 10. Spring City Electrical Manufacturing Co.
 - 11. Thomas & Betts Corporation.
 - 12. Walker Systems, Inc.; Wiremold Company (The).
 - 13. Woodhead, Daniel Company; Woodhead Industries, Inc. Subsidiary.
- B. Sheet Metal Outlet and Device Boxes: NEMA OS 1.
- C. Cast-Metal Outlet and Device Boxes: NEMA FB 1, Type FD, with gasketed cover.
- D. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- E. Cast-Metal Pull and Junction Boxes: NEMA FB 1, cast aluminum with gasketed cover.
- F. Hinged-Cover Enclosures: NEMA 250, Type 1, with continuous hinge cover and flush latch.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic, finished inside with radio-frequency-resistant paint.
- G. Cabinets: NEMA 250, Type 1, galvanized steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel. Hinged door in front cover with flush latch and concealed hinge. Key latch to match panelboards. Include metal barriers to separate wiring of different systems and voltage and include accessory feet where required for freestanding equipment.

2.7 FACTORY FINISHES

A. Finish: For raceway, enclosure or cabinet components, provide manufacturer's standard ivory paint applied to factory-assembled surface raceways, enclosures, and cabinets before shipping.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

RACEWAYS AND BOXES

A. Outdoors:

- 1. Exposed: Rigid steel or IMC.
- 2. Concealed: Rigid steel or IMC.
- 3. Underground, Single Run: RNC.
- 4. Underground, Grouped: RNC.
- 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 6. Boxes and Enclosures: NEMA 250, Type 4.
- B. Indoors:
 - 1. Exposed: Surface metal raceways except in mechanical and electric rooms where EMT is acceptable.
 - 2. Concealed: EMT.
 - 3. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC; except use LFMC in damp or wet locations.
 - 4. Damp or Wet Locations: Rigid steel conduit.
 - 5. Boxes and Enclosures: NEMA 250, Type 1, except as follows:
 - a. Damp or Wet Locations: NEMA 250, Type 4, stainless steel.
- C. Minimum Raceway Size: 3/4-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Intermediate Steel Conduit: Use threaded rigid steel conduit fittings, unless otherwise indicated.

3.2 INSTALLATION

- A. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- B. Complete raceway installation before starting conductor installation.
- C. Support raceways as specified in Division 16 Section "Basic Electrical Materials and Methods."
- D. Install temporary closures to prevent foreign matter from entering raceways.
- E. Protect stub-ups from damage where conduits rise through floor slabs. Arrange so curved portions of bends are not visible above the finished slab.
- F. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.
- G. Conceal conduit and EMT within finished walls, ceilings, and floors, unless otherwise indicated.
 - 1. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
 - 2. All conduits and raceways shall be installed parallel and at right angles to building lines.

RACEWAYS AND BOXES

- H. Raceways Embedded in or below Slabs: Install in middle 1/3 of slab thickness where practical and leave at least 2 inches of concrete cover.
 - 1. Secure raceways to reinforcing rods to prevent sagging or shifting during concrete placement.
 - 2. Space raceways laterally to prevent voids in concrete.
 - 3. Run conduit larger than 1-inch trade size parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support.
 - 4. Change from nonmetallic tubing to rigid steel conduit before rising above the floor. Nonmetallic elbow and tubing may be used in masonry walls to 16" above finished floor.
- I. Install all raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 - 1. Run parallel or banked raceways together on common supports.
 - 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- J. Join raceways with fittings designed and approved for that purpose and make joints tight.
 - 1. Use insulating bushings to protect conductors.
- K. Tighten set screws of threadless fittings with suitable tools.
- L. Terminations:
 - 1. Where raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
 - 2. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
- M. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire.
- N. Telephone and Signal System Raceways, 2-Inch Trade Size and Smaller: In addition to above requirements, install raceways in maximum lengths of 150 feet and with a maximum of two 90-degree bends or equivalent. Separate lengths with pull or junction boxes where necessary to comply with these requirements.
- O. Install raceway sealing fittings at suitable, approved, and accessible locations and fill them with UL-listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings at the following points:
 - 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Where otherwise required by NFPA 70.

- P. Stub-up Connections: Extend conduits through concrete floor for connection to free standing equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches above the floor.
- Q. Flexible Connections: Use maximum of 72 inches of flexible conduit for recessed and semirecessed lighting fixtures. For equipment subject to vibration, noise transmission, or movement; and for all motors use maximum of 24" of flexible conduit. Use LFMC in damp or wet locations. Install separate ground conductor across flexible connections.
- R. Surface Raceways: Install a separate, green, ground conductor in raceways from junction box supplying raceways to receptacle or fixture ground terminals.
- S. Install hinged-cover enclosures and cabinets plumb. Support at each corner.

3.3 PROTECTION

- A. Provide final protection and maintain conditions that ensure coatings, finishes, and cabinets are without damage or deterioration at time of Substantial Completion.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC or paint finishes with matching touchup coating recommended by manufacturer.

3.4 CLEANING

A. After completing installation of exposed, factory-finished raceways and boxes, inspect exposed finishes and repair damaged finishes.

SECTION 16140 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes receptacles, connectors, switches, switch box occupancy sensors and finish plates.

1.3 **DEFINITIONS**

A. GFCI: Ground-fault circuit interrupter.

1.4 SUBMITTALS

- A. Product Data: For each product specified.
- B. Maintenance Data: For materials and products to include in maintenance manuals specified in Division 1.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction.
- B. Comply with NEMA WD 1.
- C. Comply with NFPA 70.

1.6 COORDINATION

- A. Receptacles for owner and contractor furnished equipment: Match plug configurations.
 - 1. Cord and Plug Sets: Match equipment requirements.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Wiring Devices:
 - a. Hubbell, Inc.; Wiring Devices Div.
 - b. Pass & Seymour/Legrand; Wiring Devices Div.
 - c. Arrow Hart.
 - 2. Underfloor Raceway Service Outlets:
 - a. Hubbell, Inc.; Wiring Devices Div.
 - b. Wiremold/Walker
 - 3. Switch Box Occupancy Sensors
 - a. Lithonia Lighting.
 - b. MYTECH Corporation.
 - c. Novitas, Inc.
 - d. Sensor Switch, Inc.
 - e. TORK.
 - f. Watt Stopper

2.2 RECEPTACLES

- A. Straight-Blade Receptacles: 125 volt, 20 AMP, 2 Pole, 3 Wire, NEMA 5-20R, Heavy Duty or Industrial Grade, duplex receptacle with continuous one piece brass combination back strap integral ground strap, Nylon face, Nylon or reinforced thermoplastic body or back plate, triple-wipe or by-pass style brass contacts, line terminals for #14 to #10 AWG conductors, Large head #10 combination slotted/Phillips head brass terminal screws, back and side wired, back-wired ground terminal. Federal Spec WC-596. UL 498. Color gray.
- B. GFCI Receptacles: Heavy Duty Industrial or Hospital grade meeting the requirements of paragraph 2.2.A above. Feed-through type, with integral NEMA WD 6, Configuration 5-20R duplex receptacle arranged to protect connected downstream receptacles on same circuit. Design units for installation in a 2-3/4-inch- deep outlet box without an adapter. Outdoor and wet location receptacles to have weatherproof "while in use" type covers.
- C. Industrial Heavy-Duty Receptacle: Comply with IEC 309-1.

2.3 PENDANT CORD/CONNECTOR DEVICES

- A. Description: Matching, locking type, plug and receptacle body connector, NEMA WD 6, Configurations L5-20P and L5-20R, Heavy-Duty grade or as indicated on drawings
 - 1. Body: Nylon with screw-open cable-gripping jaws and provision for attaching external cable grip.

2. External Cable Grip: Woven wire-mesh type made of high-strength galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.

2.4 CORD AND PLUG SETS

- A. Description: Match voltage and current ratings and number of conductors to requirements of equipment being connected.
 - 1. Cord: Rubber-insulated, stranded-copper conductors, with type SOW-A jacket. Greeninsulated grounding conductor, and equipment-rating ampacity plus a minimum of 30 percent.
 - 2. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.

2.5 SWITCHES

A. Snap Switches: Heavy-duty, quiet type, 20 amp 120/277V, federal spec, grade W-C-896E (UL).

2.6 FLOOR RACEWAY SERVICE FITTINGS

- A. Provide new floor service fittings compatible with the existing underfloor raceway system for connection of flexible liquidtight conduit and wiring to the office partition system. Fittings shall be complete with all required bushings, locknuts, adapters and hardware.
- B. Existing service fittings and componenets shall not be reused.

2.7 SWITCH-BOX OCCUPANCY SENSORS

- A. Description: Lithonia Model #LIRW Series, Lutron LOS-S Series or equal, PIR type with the following features:
 - 1. Compatible with incandescent and fluorescent loads with magnetic or electronic ballasts: 120 volts, zero to 800 watts maximum incandescent; 120 volts, zero to 1200 watts maximum ballasts (high power factor); 277 volts, zero to 2700 watts maximum, all loads.
 - 2. Range: 2000 square foot continuously adjustable from minimum to maximum 180° field of view. Internal blinders provided to mask out unwanted peripheral motion.
 - 3. Lights Off Timer: Adjustable from 30 seconds to 30 minutes.
 - 4. Photocell: Overrides automatic operations, adjustable for 2 to 500 footcandles threshold, can be disabled.
 - 5. Optimum temperature range 32° 122° F. Storage temperature range 14° 185° F. Humidity 10% - 90% non-condensing.
 - 6. The coverage pattern shall provide a 180° coverage area with a maximum coverage area of approximately 2000 square feet. A "small-motion" zone shall detect relatively small body movements and allow the lights to stay ON even though a person may not be moving or walking around the room. The remainder of the field of view, the "Large-motion" zone shall exhibit a lesser sensitivity and require larger movements.
 - 7. Device Color Gray.
 - 8. Device Plate Stainless Steel.

2.8 WALL PLATES

- A. Single and combination types match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.04-inch- thick, Type 302, satin-finished stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.

В.

2.9 FINISHES

A. Wiring Device Color: Gray, unless otherwise indicated in architectural finishes or required by Code for standard switches and receptacles. Orange for isolated ground receptacles, receptacles in surface metal raceways shall be ivory or orange to suit service provided.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install devices and assemblies plumb and secure.
- B. Install wall plates when painting is complete.
- C. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical, and **grounding terminal of receptacles on top**. Group adjacent switches under single, multi-gang wall plates.
- D. Protect devices and assemblies during painting.
- E. Adjust locations at which floor service outlets and poke through fittings are installed to suit arrangement of partitions and furnishings.
- F. Provide key type switches where indicated on plans.

3.2 IDENTIFICATION

- A. Comply with Division 16 Section "Basic Electrical Materials and Methods."
 - 1. Switches: Identify panelboard and circuit number from which served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on rear (inside) face of plate and durable wire markers or tags within outlet boxes. Where three or more switches are ganged, and elsewhere as indicated, identify each switch with approved legend engraved on wall plate
 - 2. Receptacles: Identify panelboard and circuit number from which served. Use machine-printed, pressure-sensitive, abrasion-resistant label tape on rear (inside) of faceplate in all public areas and front (outside) of faceplate in all utility areas and durable wire markers or tags within outlet boxes. Also provide identification with

permanent marker inside faceplate in utility areas in addition to outside label. (Panel and circuit numbers may be shown on inside face of receptacles that are provided with write-on ID marking surfaces in lieu of tape labels.)

3.3 CONNECTIONS

- A. Connect wiring device grounding terminal to branch-circuit equipment grounding conductor.
- B. Tighten electrical connectors and terminals according to manufacturers published torquetightening values. If manufacturers torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Test wiring devices for proper polarity and ground continuity. Operate each device at least six times.
- B. Test GFCI operation with both local and remote fault simulations according to manufacturer's written instructions.
- C. Replace damaged or defective components.

3.5 CLEANING

A. Internally clean devices, device outlet boxes, and enclosures. Replace stained or improperly painted wall plates or devices.

SECTION 16145 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:1. Indoor occupancy sensors.

B. Related Requirements:

1. Section 16140 "Wiring Devices" for wall-switch occupancy sensors, and manual light switches.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.3 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.4 CLOSEOUT SUBMITTALS

A. Operation and maintenance data

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. <u>Lithonia Lighting; Acuity Brands Lighting, Inc.</u>
 - 2. <u>Sensor Switch, Inc</u>.
 - 3. <u>Square D</u>.
 - 4. <u>Watt Stopper</u>.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack. Sensors Types shall be selected based on the room type, use and configuration.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
- 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
- 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
- 5. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 7. Bypass Switch: Override the "on" function in case of sensor failure.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Ultrasonic Type: Ceiling mounted; detect occupants in coverage area through pattern changes of reflected ultrasonic energy.
 - 1. Detector Sensitivity: Detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 2. Detection Coverage (Small Room): Detect occupancy anywhere within a circular area of 600 sq. ft. when mounted on a 96-inch- high ceiling.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 4. Detection Coverage (Large Room): Detect occupancy anywhere within a circular area of 2000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 5. Detection Coverage (Corridor): Detect occupancy anywhere within 90 feet when mounted on a 10-foot- high ceiling in a corridor not wider than 14 feet.
- D. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.

2.2 CONDUCTORS AND CABLES

A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 16120 "Conductors and Cables."

- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 16120 "Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 16120 "Conductors and Cables."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
- B. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting sensors to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
- C. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structureborne vibration, unless contactors are installed in an enclosure with factory-installed vibration isolators.
- D. Wiring Method: Comply with Section 16120 "Conductors and Cables." Minimum conduit size is 3/4 inch.
- E. Identify components and power and control wiring according to Section 16075 "Electrical Identification."

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Lighting control devices will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

SECTION 16410 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes individually and busway mounted enclosed switches and circuit breakers used for the following:
 - 1. Feeder and branch-circuit protection.
 - 2. Motor and equipment disconnecting means.
- B. Related Sections include the following:
 - 1. Division 16 Section "Wiring Devices" for attachment plugs, receptacles, and toggle switches used for disconnecting means.
 - 2. Division 16 Section "Fuses" for fusible devices.

1.3 DEFINITIONS

- A. GFCI: Ground-fault circuit interrupter.
- B. RMS: Root mean square.
- C. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of switch, circuit breaker, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each switch and circuit breaker.
 - 1. Dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Current and voltage ratings.
 - c. Short-circuit current rating.

- C. Field Test Reports: Submit written test reports and include the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Maintenance Data: For enclosed switches and circuit breakers and for components to include in maintenance manuals specified in Division 1. In addition to requirements specified in Division 1 Section "Closeout Procedures," include the following:
 - 1. Routine maintenance requirements for components.
 - 2. Manufacturer's written instructions for testing and adjusting switches and circuit breakers.
 - 3. Time-current curves, including selectable ranges for each type of circuit breaker.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. Comply with NEMA AB 1 and NEMA KS 1.
- C. Comply with NFPA 70.

1.6 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with other construction, including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Spares: For the following:
 - a. Fuses for Fused Switches: 10%

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Provide products which meet the requirements described in this Section by the following:

- 1. Square D; Schneider Electric.
- 2. GE Electrical Distribution & Control.

2.2 ENCLOSED SWITCHES

- A. Enclosed, Nonfusible Switch: NEMA KS 1, Type HD, with lockable handle.
- B. Enclosed, Fusible Switch, 800 A and Smaller: NEMA KS 1, Type HD, with clips to accommodate specified fuses, lockable handle with two padlocks, and interlocked with cover in closed position.

2.3 ENCLOSED CIRCUIT BREAKERS

- A. Molded-Case Circuit Breaker: NEMA AB 1, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic Trip Unit Circuit Breakers: RMS sensing; field-replaceable rating plug; with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and I²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and two-pole configurations with 5-mA trip sensitivity.
 - 6. Molded-Case Switch: Molded-case circuit breaker without trip units.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style suitable for number, size, trip ratings, and material of conductors.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 4. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - 5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with fieldadjustable 0.1- to 0.6-second time delay.

2.4 PLUG-IN BUSWAY DEVICES

- A. Molded-Case Circuit Breakers: NEMA AB 1; hookstick-operated handle, lockable with two padlocks, and interlocked with cover in closed position. Voltage, Amperage and number of poles as indicated on drawings.
- B. Existing plug-in bus devices that are indicated to be reused shall be cleaned and inspected by the contractor and a factory authorized representative to determine if they are acceptable for reuse. If found to be defective, they shall be replaced with new units and the defective units recycled.

2.5 ENCLOSURES

- A. NEMA AB 1 and NEMA KS 1 to meet environmental conditions of installed location.
 - 1. Dry Indoor Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Prep and Dishwashing Areas: NEMA 250, Type 4X, stainless steel.
 - 4. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.

2.6 FACTORY FINISHES

A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested enclosures before shipping.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Electrical Identification."
- B. Enclosure Nameplates: Label each enclosure with engraved metal or laminated-plastic nameplate mounted with corrosion-resistant screws.

3.4 CONNECTIONS

- A. Install equipment grounding connections for switches and circuit breakers with ground continuity to main electrical ground bus.
- B. Install power wiring. Install wiring between switches and circuit breakers, and control and indication devices.
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.5 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each enclosed switch, circuit breaker, component, and control circuit.
 - 2. Test continuity of each line- and load-side circuit.
- B. Testing: After installing enclosed switches and circuit breakers and after electrical circuitry has been energized, demonstrate product capability and compliance with requirements.
 - 1. Procedures: Perform each visual and mechanical inspection and electrical test indicated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

3.6 ADJUSTING

A. Set field-adjustable switches and circuit-breaker trip ranges.

3.7 CLEANING

A. On completion of installation, inspect interior and exterior of enclosures. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

SECTION 16442 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes the following:1. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. RFI: Radio-frequency interference.
- D. RMS: Root mean square.
- E. SPDT: Single pole, double throw.

1.4 SUBMITTALS

- A. Product Data: For each type of panelboard, overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings. Include the following:
 - a. Enclosure types and details for types other than NEMA 250, Type 1.
 - b. Bus configuration, current, and voltage ratings.
 - c. Short-circuit current rating of panelboards and overcurrent protective devices.
 - d. Features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 2. Wiring Diagrams: Power, signal, and control wiring.

PANELBOARDS

16442 - 1

- C. Field quality-control test reports including the following:
 - 1. Test procedures used.
 - 2. Test results that comply with requirements.
 - 3. Results of failed tests and corrective action taken to achieve test results that comply with requirements.
- D. Panelboard Schedules: For installation in new and existing panelboards. Submit final versions after load balancing. Do not install contract drawing panelboard schedules.
- E. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1 Section "Closeout Procedures," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.
 - 2. Time-current curves, including selectable ranges for each type of overcurrent protective device.

1.5 QUALITY ASSURANCE

- A. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories through one source from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA PB 1.
- D. Comply with NFPA 70.

1.6 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, and encumbrances to workspace clearance requirements.
- B. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified in Division 3.
- C. Coordinate branch circuit breaker ratings with associated equipment nameplate limitations of maximum overcurrent protection ratings.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Six spares for each type of panelboard cabinet lock.

PANELBOARDS

16442 - 2

2. TVSS Suppression Modules: Three spares for panelboards.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Panelboards, Overcurrent Protective Devices, Controllers, Contactors, and Accessories: a. Square D; a brand of Schneider Electric..

2.2 MANUFACTURED UNITS

- A. Enclosures: Flush and surface mounted cabinets. NEMA 250, Type 1, unless otherwise indicated to comply with environmental conditions at installed locations.
 - 1. Rated for environmental conditions at installed location.
 - a. Outdoor Locations: NEMA 250, Type 3R.
 - b. Kitchen Prep and Dishwashing Areas: NEMA 250, Type 4X, stainless steel.
 - c. Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box and wall surface.
 - 3. Finish: Manufacturer's standard enamel finish over corrosion-resistant treatment or primer coat.
 - 4. Directory Card: With transparent protective cover, mounted in metal frame, inside panelboard door.
- B. Phase and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment ground conductors; bonded to box.
 - 3. Isolated Equipment Ground Bus: Adequate for branch-circuit equipment ground conductors; insulated from box.
 - 4. Extra-Capacity Neutral Bus: Neutral bus rated 200 percent of phase bus and UL listed as suitable for nonlinear loads.
- C. Conductor Connectors: Suitable for use with conductor material.
 - 1. Main and Neutral Lugs: Mechanical type.
 - 2. Ground Lugs and Bus Configured Terminators: Compression type.
 - 3. Feed-Through Lugs: Mechanical type suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 4. Extra-Capacity Neutral Lugs: Rated 200 percent of phase lugs mounted on extracapacity neutral bus.

D. Future Devices: Mounting brackets, bus connections, and necessary appurtenances required for future installation of devices.

2.3 PANELBOARD SHORT-CIRCUIT RATING

- A. Fully rated to interrupt symmetrical short-circuit current available at terminals.
- B. Series rating of panelboards is not acceptable.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- B. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.5 OVERCURRENT PROTECTIVE DEVICES

- A. Molded-Case Circuit Breaker: UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Adjustable Instantaneous-Trip Circuit Breakers: Magnetic trip element with frontmounted, field-adjustable trip setting.
 - 3. Electronic trip-unit circuit breakers shall have RMS sensing; field-replaceable rating plug; and with the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time time adjustments.
 - d. Ground-fault pickup level, time delay, and l²t response.
 - 4. Current-Limiting Circuit Breakers: Frame sizes 400 A and smaller; let-through ratings less than NEMA FU 1, RK-5.
 - 5. GFCI Circuit Breakers: Single- and two-pole configurations with 5 mA trip sensitivity.
- B. Molded-Case Circuit-Breaker Features and Accessories: Standard frame sizes, trip ratings, and number of poles.
 - 1. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - 2. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HACR for heating, air-conditioning, and refrigerating equipment.
 - 3. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - 4. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - 5. Undervoltage Trip: Set to operate at 35 to 75 percent of rated voltage with fieldadjustable 0.1- to 0.6-second time delay.

PANELBOARDS

16442 - 4

1127 -9/26/2012

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install panelboards and accessories according to NEMA PB 1.1.
- B. Mount top of trim 74 inches above finished floor, unless otherwise indicated.
- C. Mount plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish.
- D. Install overcurrent protective devices and controllers.
- E. Install filler plates in unused spaces.
- F. Stub four 1-1/4-inch empty conduits from recessed panelboards into accessible ceiling space or space designated to be ceiling space in the future.
- G. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.

3.2 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs as specified in Division 16 Section "Electrical Identification."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with engraved laminated-plastic nameplate mounted with corrosion-resistant screws.

3.3 CONNECTIONS

- A. Ground equipment according to Division 16 Section "Grounding and Bonding."
- B. Connect wiring according to Division 16 Section "Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Prepare for acceptance tests as follows:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - 3. Do not megger TVSS units.

PANELBOARDS

- B. Testing Agency: Engage a qualified testing and inspecting agency to perform the following field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - 1. Perform each electrical test and visual and mechanical inspection stated in NETA ATS, Section 7.5 for switches and Section 7.6 for molded-case circuit breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes.
 - 1. Measure as directed during period of normal system loading.
 - 2. Perform load-balancing circuit changes outside normal occupancy/working schedule of the facility and at time directed. Avoid disrupting critical 24-hour services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After circuit changes, recheck loads during normal load period. Record all load readings before and after changes and submit test records.
 - 4. Tolerance: Difference exceeding 20 percent between phase loads, within a panelboard, is not acceptable. Rebalance and recheck as necessary to meet this minimum requirement.
- E. Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scanning of each panelboard. Remove panel fronts so joints and connections are accessible to portable scanner.
 - 1. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each panelboard 11 months after date of Substantial Completion.
 - 2. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
 - 3. Record of Infrared Scanning: Prepare a certified report that identifies panelboards checked and describes scanning results. Include notation of deficiencies detected, remedial action taken and observations after remedial action.

3.5 CLEANING

A. On completion of installation, inspect interior and exterior of panelboards. Remove paint splatters and other spots. Vacuum dirt and debris; do not use compressed air to assist in cleaning. Repair exposed surfaces to match original finish.

SECTION 16491 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes cartridge fuses, rated 600 V and less, for use in switches, controllers, and motor control centers.

1.3 SUBMITTALS

A. Product Data: Include dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings for each fuse type indicated.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Provide fuses from a single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with NEMA FU 1.
- D. Comply with NFPA 70.

1.5 **PROJECT CONDITIONS**

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.6 COORDINATION

A. Coordinate fuse ratings with HVAC and refrigeration equipment nameplate limitations of maximum fuse size.

1.7 EXTRA MATERIALS

- A. Furnish extra materials described below that match products installed and that are packaged in original cartons or containers and identified with labels describing contents.
 - 1. Fuses: Quantity equal to 10 percent of each fuse type and size, but not fewer than 3 of each type and size.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.; Bussmann Div.
 - 2. Gould Shawmut.
 - 3. Tracor, Inc.; Littelfuse, Inc. Subsidiary.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuse; class and current rating indicated; voltage rating consistent with circuit voltage.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- B. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Motor Branch Circuits: Class RK1, time delay.
- B. Other Branch Circuits: Class RK1, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels indicating fuse replacement information on inside door of each fused switch.