

The following documentation is an electronicallysubmitted vendor response to an advertised solicitation from the *West Virginia Purchasing Bulletin* within the Vendor Self-Service portal at *wvOASIS.gov*. As part of the State of West Virginia's procurement process, and to maintain the transparency of the bid-opening process, this documentation submitted online is publicly posted by the West Virginia Purchasing Division at *WVPurchasing.gov* with any other vendor responses to this solicitation submitted to the Purchasing Division in hard copy format.

VVOA	515		Jump to. PRCOID		Personalize Marcusto Reveale	App Help
ome, Christopher W Seckma	in		Procurement E	Sudgeting Accounts Rece	eivable Accounts Payable	12024
citation Response(SR) De	ept: 0313 ID: ESR09	19240000000	02130 Ver.: 1 Functio	on: New Phase: Final	Modified by batch , 09/19	2024
Header () 7						_
						😑 List View
Constal Information	ntaat Dafault Valuas	Discount	Desument Information	Clarification Deguast		
Seneral Information Co	ntact Default values	Discount	Document Information	Clarification Request		
Procurement Folder:	1468037			SO Doc Code	e: CRFQ	
Procurement Type:	Central Master Agreem	ent		SO Dep	t: 0313	
Vendor ID:	VS0000046054	2		SO Doc II	DEP250000004	
Legal Name:	WORLEY GROUP INC			Published Date	e: 9/4/24	
Alias/DBA:				Close Date	e: 9/19/24	
Total Bid:	\$89,600.00			Close Time	e: 13:30	
Response Date:	09/19/2024			Status	s: Closed	
Response Time:	11:57			Solicitation Description	Environmental Risk Assessor	11
Responded By User ID:	LisaPoppelreiter		Т	otal of Header Attachments	s: 7	
First Name:	Lisa			Total of All Attachments	s: 7	
Last Name:	Poppelreiter					
Email:	lisa.poppelreiter@wor	ley.com				
Phone:	4123775089					

Department of Administration Purchasing Division 2019 Washington Street East Post Office Box 50130 Charleston, WV 25305-0130

State of West Virginia **Solicitation Response**

Proc Folder:	1468037	1468037				
Solicitation Description:	Environmental Risk Assessor					
Proc Type:	Central Master Agreement					
Solicitation Closes		Solicitation Response	Version			
2024-09-19 13:30		SR 0313 ESR0919240000002130	1			

VENDOR					
VS0000046054 WORLEY GROUP INC					
Solicitation Number:	CRFQ 0313 DEP2500000004				
Total Bid:	89600	Response Date:	2024-09-19	Response Time:	11:57:09
Comments:					

FOR INFORMATION CONTACT THE BUYI Joseph E Hager III (304) 558-2306 joseph.e.hageriii@wv.gov	ER		
Vendor Signature X	FEIN#	DATE	
All offers subject to all terms and condition	ons contained in this solicitation		

contained in this solicitation

Line	Comm Ln Desc		Qty	Unit Issue	Unit Price	Ln Total Or Contract Amount
1	Risk or hazard assessme	nt	700.00000	HOUR	128.000000	89600.00
Comm	Code	Manufacturer		Specificatio	n	Model #
7710150	01					

Commodity Line Comments: 700 hours x \$128/hr = \$89,600

Extended Description:

Environmental Risk Assessor Open end contract for service, bid sheet represents an estimated number of hours for bidding purposes to establish a contracted set price per hour.

Worley Group, Inc. One Meridian Boulevard, Suite 2C02 Wyomissing PA 19610 USA

Telephone: +1 610 855 2000

worley.com

19 September 2024

Ref: 418160-56526

Joseph E. Hager III West Virginia Department of Environmental Protection 2019 Washington Street, East Charleston, WV 25305

Attention: Joseph Hager

Dear Mr. Hager,

SOLICITATION NO. CRFQ 0313 DEP2500000004 - ENVIRONMENTAL RISK ASSESSOR

Worley Group, Inc. (Worley) is proud to respond to the above referenced centralized request for quote (CRFQ) and to present our qualifications to the State of West Virginia, West Virginia Department of Environmental Protection (WVDEP).

Our distinguished track record in executing more than 1,000 human health and ecological risk assessment (HHERA) reports, and third-party reviews of risk assessment reports, uniquely qualify our company to provide risk assessment services to the WVDEP. Worley employee, Ms. Lisa Poppelreiter, has assisted the WVDEP in previous years completing reviews of HHERA reports submitted to WVDEP and provided technical comments regarding adherence to WVDEP regulations and guidance. Lisa has also assisted WVDEP with updating technical spreadsheets that were utilized to derive the WVDEP *De Minimis* standards. Furthermore, she has routinely attended the annual West Virginia Brownfields Conference and has conducted several presentations on technical topics as part of the Licensed Remediation Specialist (LRS) training seminar at the conference.

Another key employee at Worley is Dr. Tiona Todoruk. Tiona has more than 20 years in the execution, oversight, and review of risk assessment reports in the U.S., Canada, and internationally. She has provided third party review of HHERA reports in support of cost recovery, gap analysis, and regulatory compliance across a range of U.S. jurisdictions. She has participated in the development of several regulatory guidance documents pertaining to HHERA and is the technical director of Worley's risk assessment practice.

The attached bid contains the following items per the instructions provided by the State of West Virginia Solicitation No. CRFQ 0313 DEP2500000004:

- Signed CRFQ including proposed unit rate and acknowledgement of applicable addenda;
- Curriculum vitae (CV) for key Worley employees, including Lisa Poppelreiter and Tiona Todoruk, as well as CV for other supporting Worley employees; and,
- Example HHERA report prepared by Worley.

Worley looks forward to serving the WVDEP on this important opportunity. Please don't hesitate to contact me at 412-377-5089 if you have any questions or concerns regarding this bid or any other information contained herein.

Sincerely,

Lisa Popelieter

Lisa Poppelreiter Associate Technical Consultant/Environmental Scientist

Decommissioning & Restoration Worley Consulting

Human Health and Ecological Risk Assessment Report – Revised June 2024

Former Hinton Ice House

508 Commercial Avenue Hinton, Summers County, West Virginia Voluntary Remediation Project #21037

PREPARED FOR GREENBRIER ENVIRONEMNTAL GROUP, INC.

Document no. Rev 1: 218160-53377

August 9 2024

1 Meridian Blvd., Suite 2C02 North Sydney NSW 2060 U.S.A.

T: +61 2 8923 6866 Worley Limited

© Copyright 2024 Worley ACN 096 090 158. No part of this document or the information it contains may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from Worley.

Disclaimer

The information presented in this document was compiled and interpreted exclusively for the purposes stated in this document. Worley Group, Inc. (Worley) provided this report for Greenbrier Environmental Group, Inc. solely for the purpose noted above.

Worley has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this report, but makes no guarantees or warranties as to the accuracy or completeness of this information. The information contained in this report is based upon, and limited by, the circumstances and conditions acknowledged herein, and upon information available at the time of its preparation. The information provided by others is believed to be accurate but cannot be guaranteed.

Worley does not accept any responsibility for the use of this report for any purpose other than that stated in this document and does not accept responsibility to any third party for the use in whole or in part of the contents of this report. Any alternative use, including that by a third party, or any reliance on, or decisions based on this document, is the responsibility of the alternative user or third party.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Worley.

Any questions concerning the information or its interpretation should be directed to L. Poppelreiter or T. Todoruk.

August 9 2024

1 Meridian Blvd., Suite 2C02 North Sydney NSW 2060 U.S.A.

T: +61 2 8923 6866 Worley Limited

© Copyright 2024 Worley ACN 096 090 158. No part of this document or the information it contains may be reproduced or transmitted in any form or by any means electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from Worley.

-

PROJECT 218160-53377 - 00: REP-0001 – Human Health and Ecological Risk Assessment

Rev	Description	Originator	Reviewer	Worley Approver	Revision Date
Rev 0	Issued as Final	G t	Lisa Populaiter	fiona fodorule	01-May-24
		G. Marquez	L. Poppelreiter	T. Todoruk	_
Rev 1	Revised Final	g.	Lisa Populaiter	ficia fodorule	09-Aug-24
		G. Marquez	L. Poppelreiter	T. Todoruk	-

Table of Contents

1.	Intro	duction		1			
	1.1	1 Site History and Current Site Conditions					
	1.2	Surrounding	g Land Use and Utilities	2			
2.	Analy	tical Result	s and Screening	3			
	2.1	Analytical D	Pata	3			
		2.1.1	Soil	3			
		2.1.2	Synthetic Precipitation Leaching Procedure (SPLP)	4			
	2.2	Data Valida	tion	4			
3.	Selec	tion of Cons	tituents of Concern	6			
	3.1	Direct Conta	act COC	6			
		3.1.1	Surface and Subsurface Soil	6			
		3.1.2	Soil to Groundwater Evaluation	7			
4.	Conce	eptual Site N	lodel	8			
	4.1	Geological (Conceptual Site Model and Physical Characteristics	8			
		4.1.1	Geology	8			
		4.1.2	Hydrogeology	8			
		4.1.3	Surface Water Bodies and Water Resources	8			
	4.2	Human Hea	Ith Conceptual Site Model	9			
		4.2.1	Potential Constituent Migration Routes	9			
		4.2.2	Potential Receptors and Exposure Pathways	9			
		4.2.3	Summary of Incomplete Pathways Via Institutional Controls1	.3			
	4.3	Ecological A	ssessment Summary1	.3			
5.	Expos	sure Point C	oncentrations1	5			
	5.1	Source Con	centrations for the Direct Contact Exposure Pathways1	.5			
		5.1.1	Media-Specific and Receptor-Specific Source Concentrations1	.5			
	5.2	Calculation	of Exposure Point Concentrations for the Direct Contact Exposure Pathways1	.5			
	5.3	Site-specific	Cleanup Level for Lead1	.6			
6.	Const	ituent-Spec	ific Parameters1	8			
	6.1	Chemical Pr	operties1	.8			
	6.2	Toxicologica	al Values1	.8			
	6.3	Absorption .	Adjustment Factors1	.9			
7.	Intak	e and Expos	sure Concentration Equations and Assumptions2	0			
	7.1	Receptor-Sp	pecific Exposure Assumptions2	20			
		7.1.1	On-Site Maintenance Worker and On-Site Outdoor Worker2	20			
		7.1.2	On-Site Construction Worker2	<u>'</u> 1			
		7.1.3	On-Site Recreational User2	22			
		7.1.4	Trespasser2	22			
8.	Risk (Characteriza	ition 2	4			
	8.1	Risk Results	52	24			
	8.2	Calculation	of Lead Cleanup Level2	24			
	8.3	Alternative	Risk Analysis2	25			

9.	Uncer	tainty Analysis				
	9.1	Identificatio	n of COCs	26		
	9.2	Exposure A	ssessment	26		
		9.2.1	Receptors and Exposure Pathways	27		
		9.2.2	Source Concentrations	27		
		9.2.3	Exposure Parameters	28		
	9.3	Toxicity Val	ues	28		
	9.4	Risk Characterization Conclusion of Uncertainty Analysis				
	9.5					
	9.6	Statement of Limitations				
10.	Refere	ences		. 31		

List of Tables

Table 2-1A: Surface Soil Analytical Data and Comparison to De Minimis Screening Values - PCBs Table 2-1B: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values -PCBs

Table 2-1C: Surface Soil Analytical Data and Comparison to De Minimis Screening Values – Metals Table 2-1D: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values – Metals

Table 2-1E: Surface Soil Analytical Data and Comparison to De Minimis Screening Values – Herbicides

Table 2-1F: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values – Herbicides

Table 2-1G: Surface Soil Analytical Data and Comparison to De Minimis Screening Values – VOCs Table 2-1H: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values – VOCs

Table 2-1I: Surface Soil Analytical Data and Comparison to De Minimis Screening Values – PAHs Table 2-1J: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values – PAHs

Table 2-1K: Surface Soil Analytical Data and Comparison to De Minimis Screening Values – SVOCs Table 2-1L: Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values – SVOCs

Table 2-2A: SPLP Data (VOCs) and Comparison to Direct Contact Screening Values

Table 2-2B: SPLP Data (PAHs) and Comparison to Direct Contact Screening Values

Table 2-2C: SPLP Data (Metals) and Comparison to Direct Contact Screening Values

Table 2-2D: SPLP Data (Herbicides) and Comparison to Direct Contact Screening Values

Table 2-2E: SPLP Data (PCBs) and Comparison to Direct Contact Screening Values

Table 2-3: Analytical Sample Summary

Table 3-1: Selection of Direct Contact Constituents of Concern for Surface Soil

Table 3-2: Selection of Direct Contact Constituents of Concern for Subsurface Soil

Table 3-3: Selection of Direct Contact Constituents of Concern for Groundwater from SPLP Samples

Table 3-4: Summary of Direct Contact Constituents of Concern

Table 4-1: Potential Constituent Migration Routes, Receptors, and Exposure Pathways

Table 5-1: Source Concentrations

Table 5-2: Calculation of Site-Specific Lead Cleanup Level for a Future Recreational User

- Table 6-1: Chemical Properties
- Table 6-2: Cancer Slope Factors and Inhalation Unit Risks
- Table 6-3: Chronic Reference Doses and Reference Concentrations
- Table 6-4: Subchronic Reference Doses and Reference Concentrations
- Table 6-5: Cancer Slope Factors and Inhalation Unit Risks Tumor Type or Target Organ

Table 6-6: Chronic Reference Doses and Reference Concentrations – Critical Effect or Target Organ

Table 6-7: Subchronic Reference Doses and Reference Concentrations – Critical Effect or Target Organ

Table 6-8: Absorption Adjustment Factors for COC in Soil

Table 7-1: Summary of Exposure Assumptions for On-Site Maintenance Worker

- Table 7-2: Summary of Exposure Assumptions for On-Site Outdoor Worker
- Table 7-3: Summary of Exposure Assumptions for On-Site Construction Worker
- Table 7-4: Summary of Exposure Assumptions for On-Site Recreational User
- Table 7-5: Summary of Exposure Assumptions for Trespasser
- Table 8-1: Calculation of Risks and Hazard Indices for On-Site Maintenance Worker
- Table 8-2: Calculation of Risks and Hazard Indices for On-Site Outdoor Worker
- Table 8-3: Calculation of Risks and Hazard Indices for On-Site Construction Worker
- Table 8-4: Calculation of Risks and Hazard Indices for On-Site Recreational User
- Table 8-5: Calculation of Risks and Hazard Indices for Trespasser
- Table 8-6: Summary of Risks and Hazard Indices for All Receptors
- Table 8-7: Ratio of Source Concentrations to Risk/HI for Applicable Receptors

List of Figures

- Figure 1: Site Location Map
- Figure 2: Site Map
- Figure 3: Surface Soil Sample Location Map
- Figure 4: Subsurface Soil Sample Location Map

List of Appendices

Appendix A. Adult Lead Model

- Appendix B. Ecological Checklist
- Appendix C. Derivation of Source Concentrations
- Appendix D. Constituent Volatilization Transfer Factor Calculations

Executive Summary

This document presents the human health and ecological risk assessment for the Former Hinton Ice House (Site) in Hinton, Summers County, West Virginia. The risk assessment was completed following the West Virginia Department of Environmental Protection (WVDEP) rules, regulations, and guidelines outlined in the Title 60 Code of State Regulations, Series 3 Voluntary Remediation and Redevelopment Rule (referred to as the "Rule" in this report) (WVDEP 2021) and the West Virginia Voluntary Remediation Program (WV VRP) Guidance Manual (WVDEP 2023a).

Currently the Site is unoccupied but was previously used for industrial and commercial purposes as a cold storage location and grocery and ice plant. In the future, the planned land use for the Site will be part commercial and part recreational. One future proposed use of the Site is as an amphitheatre.

Soil analytical data were screened against the WVDEP industrial soil and residential soil *de minimis* standards. Analytical results for metals were also compared to WVDEP background soil standards. Synthetic precipitation leaching procedure (SPLP) analytical data collected from surface and subsurface soil samples were screened against the WVDEP groundwater *de minimis* standards. In accordance with WVDEP guidance, at least ten percent of the analytical data utilized in the risk assessment has been validated in accordance with standard EPA protocols.

Based on the screened analytical data, constituents of concern (COCs) were selected. There were 11 direct contact COCs retained in surface and/or subsurface soil that exceeded residential standards. These included polycyclic aromatic hydrocarbons (PAHs), metals, and aroclor-1254. Three direct contact COCs were retained in surface soil that exceeded industrial standards (i.e. benzo[a]pyrene, arsenic, and lead). There were no direct contact COCs retained from SPLP samples.

Migration routes were retained based on the detection of constituents in a specific environmental medium and the potential for those constituents to migrate within the medium or to other environmental media. The retained migration routes for on-Site surface and subsurface soil included volatilization of constituents to outdoor/trench air and indoor air, particulate emission of constituents to outdoor/trench air, and leaching from surface/subsurface soil to groundwater.

Based on the current use and anticipated future use of the Site, expected receptors were evaluated. Potential exposure pathways were evaluated for each expected receptor. Those exposure pathways that were determined to be a complete exposure pathway were retained for the quantitative risk assessment, except for those exposure pathways that will be made incomplete by means of an institutional/engineering control in a land use covenant (LUC). The receptors and exposure pathways retained for the quantitative risk assessment are:

- <u>On-Site Maintenance Worker</u> Incidental ingestion of soil, dermal contact with soil, and inhalation of particulates from soil (without intrusive activities).
- <u>On-Site Outdoor Worker</u> Incidental ingestion of soil, dermal contact with soil, and inhalation of particulates from soil (without intrusive activities).

- <u>On-Site Construction/Utility Worker</u> Incidental ingestion of soil, dermal contact with soil, and inhalation of particulates from soil (during intrusive activities).
- <u>On-Site Recreational User</u> Incidental ingestion of soil, dermal contact with soil, and inhalation of volatiles and particulates from soil (without intrusive activities).
- <u>Trespasser</u> Incidental ingestion of soil, dermal contact with soil, and inhalation of particulates from soil (without intrusive activities).

The Site will be restricted to commercial/industrial use and recreational use; therefore, residential receptors were not evaluated in this risk assessment.

An ecological screening was completed for the Site. The "Checklist to Determine the Applicable Remediation Standards, Part 1: Ecological Standards", provided in the WV VRP Guidance Manual (WVDEP 2023a), was used in the ecological screening process. The checklist follows the ecological *de minimis* screening evaluation outlined in Section 60-3-9.5 of the Rule (WVDEP 2021). The ecological checklist indicated "no further ecological evaluation is required" for the Site. An evaluation of Site conditions concluded that it is unlikely that the Site would serve as a suitable habitat for terrestrial species.

Exposure point concentrations (EPCs) were derived for the applicable retained COCs in soil. The source concentrations for soil were 95% upper confidence limits (UCLs) of the mean concentrations derived using data from on-Site surface soil samples collected 0-2 feet below ground surface (ft bgs). For COCs with an insufficient number of detections to calculate a UCL, maximum concentrations were utilized as the source concentrations (i.e. aroclor 1254). The arithmetic mean of surface soil concentrations was derived for lead.

In accordance with the WVDEP VRP Guidance Manual (WVDEP 2023a), the Risk Assessment Information System (RAIS) website (http://rais.ornl.gov) was generally utilized to obtain chemical properties where available. Where RAIS did not contain chemical properties for COCs, alternative sources such as USEPA were consulted. Toxicity reference values were compiled following the hierarchy of sources presented in Section 60-3-8.1.c.1 in the Rule (WVDEP 2021).

Receptor-specific exposure assumptions were selected using WVDEP recommended values, when available. Otherwise, alternative sources were used, such as recommended values from other state program guidance or USEPA guidance; or professional judgment based on Site-specific information. The estimated total carcinogenic risks and noncarcinogenic hazard indices (HI) for the on-Site construction worker (total risk of 1E-6 and total HI of 0.2) are below the WVDEP industrial benchmark values of 1E-5 and 1, respectively. The total risk of 2E-5 for the on-Site maintenance worker exceeds the industrial risk benchmark of 1E-5; however, the total HI (0.2) is below the benchmark of 1. The total risk of 8E-5 for the on-Site outdoor worker exceeds the industrial risk benchmark of 1E-5; however, the total HI (0.5) is below the benchmark of 1. The total risk (1E-4) and total HI (2) for the on-Site recreational user are above the WVDEP residential benchmark values of 1E-6 and 1, respectively. For the trespasser, the total risk (9E-6) exceeds the residential risk benchmark of 1E-6; however, the total HI (0.1) is below the benchmark of 1.

A cleanup level for lead was also derived for the on-Site recreational user based on USEPA guidance. The calculated cleanup level was 255 mg/kg. The arithmetic mean for lead using surface soil samples is 650.8 mg/kg, which exceeds the cleanup level. This arithmetic mean also exceeds the industrial soil standard for lead utilized in this HHERA (247 mg/kg).

The source concentrations derived for COCs in surface soil were skewed high due to observed concentrations in surface soil sample SS-04 (0-0.5'), which had concentrations at least an order of magnitude greater than other surface soil samples collected. An alternative risk analysis was completed to determine if further mitigation measures would still be required after SS-04 (0-0.5') was mitigated. Based on this alternative risk analysis, the risk for the on-Site recreational user (total risk of 1E-5) will still require abatement via remedial measures or pathway elimination after surface soil sample SS-04 (0-0.5') has been mitigated. In addition, the alternative arithmetic mean concentration for lead (391.8 mg/kg) exceeds the calculated cleanup level for the recreational user and the industrial soil standard utilized in this report. A cap will be placed on the property and a Land Use Covenant (LUC) restriction will be established requiring excavation workers to follow a Health and Safety Plan (HASP) during intrusive activities beneath the cap.

During the risk assessment process, uncertainty and variability are inherent in the estimation of risks based on specific variables, such as screening of analytical data, selection of COCs, receptors and exposure pathways analysis, derivation of EPCs, selection of exposure parameters, and selection of toxicological values. This risk assessment employed multiple conservative assumptions, which, when combined, produce an additive conservative effect throughout the process, resulting in an overestimation of the potential risk.

1. Introduction

At the request of Greenbrier Environmental Group (GEG), Worley Group Inc. operating as Worley Consulting (Worley) has prepared the human health and ecological risk assessment report (HHERA) for the Former Hinton Ice House (the Site). The Site is owned by New River Gorge Regional Development Authority (NRGDA) and is currently under the West Virginia Voluntary Remediation and Redevelopment Program (VRP #21037) to address environmental conditions resulting from the previous operations at the Site. Currently the Site is unoccupied but was previously used for industrial and commercial purposes as a cold storage location and grocery and ice plant. In the future, the planned land use for the Site will be part commercial and part recreational. One future proposed use of the Site is as an amphitheatre.

The risk assessment was completed following the West Virginia Department of Environmental Protection (WVDEP) rules, regulations, and guidelines outlined in the Title 60 Code of State Regulations (CSR), Series 3 Voluntary Remediation and Redevelopment Rule (i.e. the Rule) (WVDEP 2021) and the West Virginia Voluntary Remediation Program (VRP) Guidance Manual (WVDEP 2023a).

The purpose of this HHERA is to evaluate the potential risks to human health and the environmental from exposure to Site-related constituents. The HHERA was prepared based on the characterization results presented in the January 2024 Site Assessment Report (SAR; GEG 2024).

1.1 Site History and Current Site Conditions

Information regarding the Site history and current Site conditions was obtained from the SAR (GEG 2024). The Site is located at 508 Commercial Avenue in Hinton, Summers County, West Virginia. The Site is located on four parcels, encompassing approximately 0.437 acres of land (Parcel ID #45-04-003A-0017-0000, 45-04-003A-0018-0000, 45-04-003A-0019-0000, and 45-04-003A-0020-0000). The approximate Global Positioning System (GPS) coordinates for the center of the Site are 37.676911° North Latitude and -80.887903° West Longitude. The Site location is shown on **Figure 1** (GEG 2024).

The Site was formerly developed with several dwellings, until circa 1905 when a wholesale hardware store was developed on the southeastern corner of the property. A coal shed was also erected on the southwestern corner of the property in approximately 1910.

Previous assessments identified the following recognized environmental conditions (RECs) in connection with the property:

- Piles at the Site were thought to be road cinders for weather control; however, this had not been confirmed.
- While the areas around or near the fence line were covered in vegetation, the central portion of the Site showed little to no signs of vegetation growth. It was unknown if the vegetation was missing due to frequent traffic at the Site, herbicide use or some other unknown cause.

- Dark soil staining was present near a pile of crushed/damaged drums along the northern wall of the building.
- Discarded upright beverage coolers (labeled "Snapple[®]") and propane-like tanks were present during the Site visit.
- The property operated as a cold storage location and grocery, as well as an ice plant. It was unknown if any leaks of any coolant have occurred from these activities. It was also unknown what type of coolant was used by these businesses for the coolers, ice makers, and refrigeration units.
- The retaining wall along the north and east of the Site was built with old railroad ties, which may have been treated with creosote. Some of these ties have broken or deteriorated.

The Site is currently developed with a three-story commercial structure formerly operated as the Hinton Ice House. The existing building is slab-on-grade. The Site is currently unpaved, covered by grass and gravel. The Site had been used for equipment storage by the City of Hinton but is currently unused and unoccupied. A Site map is shown on **Figure 2** (GEG 2024).

1.2 Surrounding Land Use and Utilities

The Site is bounded by various commercial structures/properties as described below.

- To the north the Site is bounded by Front Street with a CSX Transportation owned and operated railyard beyond Front Street.
- To the south, the Site is bounded by Commercial Avenue followed by a converted railroad depot and vacant commercial structure known as the Hinton Hardwoods Building.
- To the east, the Site is bounded by 6th Avenue followed by undeveloped/wooded property owned by CSX Transportation which previously served as a portion of the railyard.
- To the west, the Site is bounded by vacant commercial structures followed by 5th Avenue. Additionally, a basketball court and water park owned and operated by the City of Hinton is located west of the Site beyond 5th Avenue.

There are residential properties located further south, southeast, and southwest of the Site.

As shown on **Figure 2** (GEG 2024), there are underground utility lines surrounding the Site. These include water, gas, and sanitary sewer lines. A drain line extends from the existing building to the northwest across Front Street. The utility lines are approximately 3 ft bgs.

2. Analytical Results and Screening

This section presents the screened analytical results for surface soil and subsurface soil (**Tables 2-1A through 2-1L**) and SPLP results (**Tables 2-2A through 2-2E**). **Table 2-3** presents a summary of the analytical sample locations and identifies which samples were retained for use in the risk assessment.

2.1 Analytical Data

2.1.1 Soil

The locations of the surface soil and subsurface soil samples are presented on **Figures 3 and 4** (GEG 2024), respectively. **Tables 2-1A through 2-1L** present surface and subsurface soil analytical results for polychlorinated biphenyls (PCBs), metals, herbicides, volatile organic compounds (VOCs), PAHs, and semi-volatile organic compounds (SVOCs), respectively. The analytical data presented in these tables are compared to the West Virginia *de minimis* standards for residential and industrial soil (WVDEP 2023b) with the exception of the lead screening values.

The United States Environmental Protection Agency (USEPA) recently updated the residential soil regional screening levels (RSLs) for lead in May 2024 (USEPA 2024a). The USEPA recommends a residential soil RSL of 200 mg/kg for Sites with one source of lead and a residential soil RSL of 100 mg/kg for Sites with multiple sources of lead (e.g. lead-based paint, lead water pipes, etc.). The WVDEP is proposing to adopt these USEPA residential lead soil screening values in the next update to the *de minimis* standards (WVDEP 2024). In accordance with USEPA, three secondary sources of lead were considered: ambient air, lead in drinking water, and lead-based paint. According to the National Ambient Air Quality Standards (NAAQS), the Site is located in a region that is in attainment for lead air quality. It is unknown if lead pipes are used in the public water distribution system or in residential homes that utilize the public water supply. According to the USEPA lead paint index search tool (EJScreen Tool), the Site is located in an area that is in the 80-90th percentile category. Based on this analysis, the USEPA residential soil screening level of 100 mg/kg was used for comparison to lead analytical results in soil.

The WVDEP is proposing to update the industrial soil *de minimis* standard from 800 mg/kg to 426 mg/kg (WVDEP 2024). The value of 426 mg/kg is based on using WVDEP default exposure assumptions for an outdoor worker in the USEPA Adult Lead Model (ALM). This value is based on a target blood lead level of 5 μ g/dL, which assumes a single source of lead. However, in this risk assessment, the ALM was used to derive a preliminary remediation goal (PRG) that is protective of an outdoor worker exposed to multiple sources of lead. This model is included in **Appendix A**. Default WVDEP assumptions for an outdoor worker were used in the ALM. The

target blood lead level was changed from 5 μ g/dL to 3.5 μ g/dL to be protective of multiple sources of lead. The resulting PRG is 247 mg/kg. This value was selected to screen lead soil analytical results to evaluate nonresidential receptors.

In addition, metals were compared to West Virginia background concentrations for soil. In accordance with the VRP Guidance Manual, a comparison to West Virginia migration to groundwater standards was not made as SPLP analytical results from select soil samples were used to evaluate migration to groundwater.

In accordance with Section 4.4.1 of the WV VRP Guidance Manual (WVDEP 2023a), although the Site is currently commercial/industrial land use and future residential land use will be restricted, the soil data were screened against WVDEP residential soil *de minimis* standards to support the need for a land use covenant.

In general, soil samples were collected from surface soil (0-2 ft bgs) and subsurface soil (2-15 ft bgs) from the unsaturated zone. No saturated samples were collected as a saturated zone (groundwater) was not encountered. **Table 2-3** presents a summary of the soil sample locations and indicates if the sample is retained or not retained for use in the risk assessment. In general, soil samples collected (including the field duplicates) were utilized in the risk assessment. In accordance with West Virginia guidance (WVDEP 2023a), the analytical results of the original and duplicate soil samples were compared, and the more conservative analytical results per constituent was utilized for risk assessment purposes.

2.1.2 Synthetic Precipitation Leaching Procedure (SPLP)

Groundwater was not encountered during Site investigation activities. Therefore, no groundwater monitoring wells were installed and no groundwater samples were collected. However, surface and subsurface soil samples were retained for SPLP analysis.

Tables 2-2A through 2-2E present the SPLP analytical results for VOCs, PAHs, dissolved metals, herbicides and PCBs, respectively. The SPLP analytical data were screened against the WVDEP *de minimis* groundwater standards (WVDEP 2023b).

Table 2-3 presents a summary of the SPLP sample locations and indicates if the samples are retained or not retained for this risk assessment. As indicated in **Table 2-3**, all SPLP samples were retained for use in this risk assessment (including the field duplicates). In accordance with West Virginia guidance (WVDEP 2023a), the analytical results of the original and duplicate SPLP samples were compared, and the more conservative analytical result per constituent was utilized for risk assessment purposes.

2.2 Data Validation

Analytical data generated during assessment activities at the Site were validated to Stage IV requirements by Environmental Data Validation, Inc. The data validation entailed a general review for completeness of analytical data deliverables and a detailed review of at least 10% of the

analytical data per medium collected during Site assessment activities. Copies of the Data Validation Reports are included in the SAR (GEG 2024). It was determined that, in general, the data could be used for the risk assessment with minor exceptions that would not affect the results of the risk assessment, as rejections were not for Site-related constituents of concern (COCs) and/or were related to waste characterization purposes.

3. Selection of Constituents of Concern

COCs were selected for the direct contact exposure pathways for Site receptors. Direct contact exposure pathways include ingestion, dermal contact, and inhalation of volatiles/particulates in outdoor air. The selection process was done using the analytical data and comparisons presented above in Section 2.1. There were little to no detections of volatile constituents in surface and subsurface soil, and no soil gas samples were collected. Therefore, a comparison to vapor intrusion screening criteria was not completed.

3.1 Direct Contact COC

A detailed discussion of direct contact COC selection is presented below for surface soil (**Table 3-1**), subsurface soil (**Table 3-2**), and SPLP results (**Table 3-3**). A summary of direct contact COCs retained in each medium is shown in **Table 3-4**.

3.1.1 Surface and Subsurface Soil

Constituents that exceeded a residential or industrial soil *de minimis* standard in surface soil samples collected between 0-2 ft bgs or subsurface soil samples collected greater than 2 ft bgs was retained as a residential or industrial direct contact COC in surface and/or subsurface soil, respectively. In addition, metals were compared to WV background standards (90th percentile) from the VRP Guidance Manual (WVDEP 2023a). Metals that were detected in concentrations above the WV *De Minimis* standards, but below the WV background standards were not retained as direct contact COCs. Metals that were detected above WV background standards, but below risk-based WV *de minimis* standards were also not retained as direct contact COCs.

Table 3-1 presents the COC selection process for surface soil and **Table 3-2** presents the COC selection process for subsurface soil. These tables include frequency of detection, minimum and maximum concentrations, and a comparison of maximum concentrations to applicable screening criteria.

As shown in **Table 3-1**, the COCs retained in surface soil include the following:

<u>PAHs</u>

- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(k)fluoranthene
- Dibenzo(a,h)anthracene
- Indeno(1,2,3-cd)pyrene

<u>Metals</u>

- Antimony
- Arsenic
- Iron

• Lead

<u>PCBs</u>

• Aroclor-1254

As shown in **Table 3-2**, the COC retained in subsurface soil include the following:

<u>PAHs</u>

• Benzo(a)pyrene

<u>Metals</u>

- Arsenic
- Lead

A summary of the retained direct contact COC in surface and subsurface soil is presented in **Table 3-4**.

3.1.2 Soil to Groundwater Evaluation

Constituents that exceeded a groundwater *de minimis* standard in SPLP samples collected from surface and subsurface soil was retained as a direct contact COCs in soil. As shown in **Table 3-3** and summarized in **Table 3-4**, there were no COCs retained in SPLP samples and no further evaluation of contaminant transport to groundwater will be necessary.

4. Conceptual Site Model

This section presents the conceptual Site model (CSM) developed for the Site and includes a geologic CSM, human health CSM, and an ecological screening assessment.

4.1 Geological Conceptual Site Model and Physical Characteristics

4.1.1 Geology

The Site is located in the Appalachian Plateau physiographic province, a subdivision of the Appalachian Mountains. The province includes the western two thirds of the state of West Virginia and is characterized by relatively flat-bedded sedimentary rock formations. The Site is located in a relatively mountainous area, approximately 1,400 feet above sea level. According to the geologic map of West Virginia, the geology beneath the Site consists of the Kanawha Formation of the Pennsylvanian System.

The geology underlying the Site consists of Pennsylvanian age rocks of the Kanawha Formation, primarily characterized by sandstone with minor constituents of shale, siltstone, and coals with thin marine zones (Cardwell 1968). A single type of soil was mapped at the Site. The Site is composed of Urban land-Ernest complex soil, which is predominantly silty loamy soil.

The Site is not paved and is overlain with a thin layer (less than two feet) of topsoil and/or crushed gravel/limestone. Below topsoil, there is a layer of sandy silt and gravel fill. Silty sand with sandstone fragments were encountered from 5-14 ft bgs and bedrock was encountered from 5-20 ft bgs. Some locations showed evidence of coal fines. Gravel was also present throughout the cores. Groundwater has not been encountered at the Site to the depth of investigation (20 ft bgs).

4.1.2 Hydrogeology

Groundwater in the Appalachian Plateau physiographic province occurs in two hydrogeologic units comprising the surficial aquifer (unconsolidated sand, gravels, silts, and clays) and the underlying bedrock aquifer. Occasionally, groundwater may be encountered in perched zones due to the presence of higher, shallow permeable units confined by lower impermeable units. Groundwater was not encountered during Site investigations to the depth of investigation (20 ft bgs) and additional details on groundwater beneath the Site is not available.

4.1.3 Surface Water Bodies and Water Resources

No perennial surface water bodies are present on the Site. The New River is located approximately 475 feet to the northwest of the Site beyond Front Street and the CSX railyard.

According to the West Virginia Water Resources Management Plan, the Site is not located within a WVDEP recognized Source Water Zone of Critical Concern (ZCC). Additionally, the Site is not located within a WVDEP recognized Wellhead Protection Area.

Residential structures in the area are provided public water by West Virginia American Water. Sanitary sewer services are provided by the Hinton Sanitary Board.

4.2 Human Health Conceptual Site Model

Potential constituent migration routes and potential receptors are assessed in this section to determine whether potentially complete exposure pathways exist at the Site. As stated in Section 4.1 in the WV VRP Guidance Manual (WVDEP 2023a), an exposure pathway is considered complete if the following four elements exist: 1) a source and mechanism of a chemical release to the environment; 2) an environmental receiving or transport mechanism (i.e. soil or groundwater) or pathway (i.e. air vapor and/or particulates, surface water, and sediment) for the released chemical; 3) a point of potential contact with the environmental medium/pathway of concern; and, 4) an exposure route (i.e. ingestion, dermal contact, inhalation) at the receptor contact point.

4.2.1 Potential Constituent Migration Routes

Likely constituent migration routes were evaluated for soil based on the detection of constituents in the medium and the potential for those detected constituents to migrate within the medium or to other media. The evaluation of migration routes is based on the detection of constituents and is independent of whether those constituents exceed applicable screening criteria.

The potential constituent migration routes retained for receptor-specific evaluation are presented in **Table 4-1** and are summarized as follows:

On-Site Surface and Subsurface Soil

- Volatilization of constituents from on-Site surface and subsurface soil to soil gas and subsequent seepage of soil gas into a building (indoor air);
- Volatilization of constituents from on-Site surface and subsurface soil to ambient/trench air;
- Particulate emission of constituents from on-Site surface soil to ambient air;
- Particulate emission of constituents from on-Site surface and subsurface soil to trench air; and,
- Leaching of constituents from on-Site surface soil to subsurface soil and then to groundwater.

4.2.2 Potential Receptors and Exposure Pathways

This section identifies potential receptors and their associated exposure pathways. Potential receptors were selected to represent individuals who are likely to come into contact with COCs in soil at the Site now or in the future. As part of the exposure pathway analysis, reasonable potential exposure pathways were assessed. This exposure pathway analysis accounts for pre-emptive restrictions at the Site (i.e. land use restriction), which are presented in more detail in Section 4.2.3.

The following likely receptors were evaluated:

Current Receptors:

- On-Site Outdoor Worker
- Trespasser

Future Receptors:

- On-Site Maintenance Worker
- On-Site Outdoor Worker
- On-Site Construction/Utility Worker
- On-Site Indoor Worker
- On-Site Recreational User

The Site is currently not occupied but redevelopment for commercial and recreational land use is anticipated. Recreational use of the property may include uses such as a park or amphitheater. Current receptors are limited to workers who may occasionally access the Site (property had been used recently for equipment storage) and trespassers that may occasionally access the Site. Future receptors could include workers and recreational users.

Based on the potential receptors listed above and the planned future land use, descriptions of the retained receptors are provided below. Exposure pathways were retained based on the potential sources of COCs, migration potential of COCs, and the activities of the receptor. **Table 4-1** presents a summary of the exposure pathways considered for each receptor and identifies whether exposure pathways were retained.

4.2.2.1 Trespasser

The trespasser is a receptor who may infrequently visit the Site without permission. This trespasser is likely to be a resident from a nearby property. There is the potential for a trespasser to access the Site and be exposed to soil.

A realistic age range for the trespasser is a teenager/young adult. This receptor is not expected to perform intrusive activities while at the Site. As a result, the trespasser could be directly exposed to surface soil, but not subsurface soil. Due to the limited exposure scenario for this receptor (e.g. infrequent visits to the Site), it was determined that the industrial soil *de minimis* standards were considered appropriate to evaluate this receptor. See Section 7.1.4 for further discussion on the assumed exposure parameters for a trespasser. There were COCs retained in soil based on measured constituent concentrations above industrial soil *de minimis* standards. As a result, incidental ingestion, dermal contact, and inhalation of particulates soil exposure pathways were retained for this receptor. There were no volatile constituents retained as industrial direct contact COC in surface soil or subsurface soil. Therefore, the inhalation of volatiles from surface soil and subsurface soil pathways were not retained.

A summary of the exposure pathways considered and retained for the on-Site trespasser is provided in **Table 4-1**.

4.2.2.2 On-Site Outdoor Worker and Maintenance Worker

The on-Site outdoor worker is an individual who is an employee for the City of Hinton and primarily performs work activities outdoors. Currently, the Site is unoccupied but has had occasional use for equipment storage and laydown area. Current outdoor workers may have minimal exposure to soil during equipment pick up and drop off. In the future, it was assumed an on-Site maintenance worker would likely work at the Site. The on-Site maintenance worker is an individual who will perform general work at the Site including groundskeeping, landscaping, and maintenance of the facility for a limited time and frequency during the year as the property is small in size (0.437 acres) and would require limited maintenance. However, as a conservative analysis, it was also assumed a full-time outdoor worker may potentially work at the Site in the future.

These receptors may be directly exposed to constituents in surface soil or indirectly exposed to volatile constituents that volatilize from subsurface soil to ambient air. There were COCs retained in on-Site surface soil that exceeded industrial soil *de minims* standards. Therefore, incidental ingestion, dermal contact, and inhalation of particulates exposure pathways for surface soil were retained for these receptors. There were no volatile constituents retained as industrial direct contact COCs in surface soil or subsurface soil. Therefore, the inhalation of volatiles from surface soil and subsurface soil pathways were not retained.

A summary of the exposure pathways considered for the current and future on-Site outdoor worker and future on-Site maintenance worker, and whether or not those pathways were retained is shown in **Table 4-1**. Based on the more frequent exposure expected for the future on-Site outdoor worker, a future on-Site outdoor worker was quantitatively evaluated, which is a more conservative assessment that is protective of the current outdoor worker. The future on-Site maintenance worker was also quantitatively evaluated.

4.2.2.3 On-Site Construction/Utility Workers

The on-Site construction worker is an individual who would be involved in future construction and/or excavation activities on-Site. This may include installation of new utility lines, major repairs to existing utility lines, installation of building footings or other similar activities, which may result in exposure lasting more than one day. The on-Site utility worker is an individual who would be involved with repairing and maintaining utility lines on-Site. The utility worker is not expected to be involved in the installation of new lines as this is assumed to be performed by a construction worker.

Note that consideration was made to evaluate off-Site construction and utility workers in the rightof-way of the adjacent roads; however, the off-Site construction and utility workers are expected to have less exposure compared to the on-Site construction and utility workers since impacts are primarily on-Site. As a result, the highest potential exposure to COCs is expected to occur on-Site.

The typical maximum excavation depths that WVDEP considers for a construction worker and utility worker are 10 ft bgs and 4 ft bgs, respectively. Although the typical excavation depth provided by

218160-53377_REP_0001_Rev 1_GEG-Hinton Ice House-HHERA_080924

WVDEP for a construction worker is significantly deeper than the current depths of utilities at the Site (i.e. approximately 3 ft bgs), these were the excavation depths assumed for the on-Site construction and utility workers to evaluate potential exposure due to the potential for utilities to be installed at deeper depths in the future and the potential for future building construction. Based on the maximum excavation depth for the on-Site construction and utility workers, these receptors may come into direct contact with surface and subsurface soil. There were no constituents measured at concentrations above the WVDEP industrial soil *de minimis* standards in subsurface soil. As a result, no exposure pathways were retained for subsurface soil.

These receptors may be directly exposed to constituents in surface soil. There were COCs retained in on-Site surface soil that exceeded industrial soil *de minimis* standards. Therefore, incidental ingestion, dermal contact, and inhalation of particulates exposure pathways for surface soil were retained for these receptors. There were no volatile constituents retained as industrial direct contact COC in surface soil. Therefore, the inhalation of volatiles from surface soil was not retained.

A summary of the potential and retained exposure pathways considered for the on-Site construction worker and on-Site utility worker is provided in **Table 4-1**. Since exposure scenarios for both of these receptors are the same (exposure is to COC in surface soil only), one quantitative assessment (labeled as a "construction worker") was completed that is considered representative of both receptors.

4.2.2.4 On-Site Indoor Worker

The on-Site indoor worker is an individual who performs work activities indoors. Currently the Site is unoccupied; therefore, there is no current on-Site indoor worker. Future plans for the Site are to refurbish the existing on-Site building. The primary activity conducted by a future on-Site indoor worker is likely office work.

An on-Site inside worker is expected to spend the majority of their time indoors. Therefore, the outdoor direct contact soil exposure pathways (i.e. incidental ingestion, dermal contact, and the inhalation of particulates and volatiles to outdoor air from soil) were not considered applicable for this receptor as exposure is considered to be negligible from these pathways. However, there is the potential for this receptor to be exposed to Site-related constituents that volatilize to indoor air (via vapor intrusion) from soil.

Volatile constituents in soil were generally below detection limits; the few detections of volatile constituents are orders of magnitude below the industrial soil *de minimis* standards. As a result, the inhalation of volatiles from soil to indoor air via vapor intrusion was not retained for a future on-Site indoor worker.

A summary of the exposure pathways considered for the on-Site indoor worker and whether or not those pathways were retained is shown in **Table 4-1**.

4.2.2.5 On-Site Recreational User

The anticipated future use of the Site may include recreational use. This may include uses such as a park or amphitheater. The on-Site recreational user is an individual who performs recreational activities outdoors. The recreational activities performed by this receptor may include activities such as playground use, attending concerts, picnics, etc. Child and adult on-Site recreational users were evaluated. It was conservatively assumed that the child recreational user and the adult recreational user may be the same individual; therefore, the child and adult recreational user exposures were summed together.

Based on the expected activities of the on-Site recreational user, this receptor is not expected to perform intrusive activities. However, the on-Site recreational user may be exposed to the existing surface soil. This receptor was assumed to be in direct contact with surface soil (0-2 ft bgs). There were COCs retained in on-Site surface soil that exceeded residential soil *de minimis* standards. Therefore, incidental ingestion, dermal contact, and inhalation of particulates exposure pathways for surface soil were retained for this receptor. There were also two potentially volatile constituents (benzo[a]anthracene and aroclor-1254) retained as residential direct contact COCs in surface soil. Therefore, the inhalation of volatiles from surface soil was also retained. Therefore, the inhalation of volatiles from surface soil was not retained.

A summary of the potential and retained exposure pathways considered for the on-Site recreational user is shown in **Table 4-1**.

4.2.3 Summary of Incomplete Pathways Via Institutional Controls

Based on the receptor and exposure pathway analysis above, a number of exposure pathways will be considered incomplete by means of implementing an institutional control. The following is a summary of the receptor(s) and pathways that will be considered incomplete via implementation of the forthcoming proposed institutional control:

• Restricted residential use of the on-Site property, which will eliminate direct contact exposures to soil for future on-Site residents.

The institutional control shall be constituted via a land use covenant, which will be documented in the Final Report.

4.3 Ecological Assessment Summary

To comply with Section 60-3-8.5 of the Rule (WVDEP 2021), potential impacts to ecological receptors were evaluated. The "Checklist to Determine the Applicable Remediation Standards, Part 1: Ecological Standards", provided in the WV VRP Guidance Manual (WVDEP 2023a), was used in the ecological screening process. The checklist follows the ecological *De Minimis* screening evaluation outlined in Section 60-3-9.5 of the Rule (WVDEP 2021).

The first step in determining whether a complete exposure pathway exists was performed using the "Checklist to Determine the Applicable Remediation Standards, Part 1: Ecological Standards", which

is presented in **Appendix B**. As shown in the ecological checklist, "no further ecological evaluation is required" for the Site. A description of the local conditions is presented below.

Local conditions:

• The Site is currently developed with a three-story commercial structure formerly operated as the Hinton Ice House. The Site is currently unoccupied but land use was historically commercial/industrial and the Site is generally developed. The property is approximately 0.437 acres in size. The Site is unpaved and is overlain with a thin layer (<2 ft bgs) of top soil or gravel. While the areas around or near the fence line were covered in vegetation, the central portion of the Site showed little to no signs of vegetation growth. It was unknown if the vegetation was missing due to frequent traffic at the Site or herbicide use or some other unknown cause. There were no herbicides detected in soil samples collected across the Site. The developed area would not be considered suitable habitat for terrestrial ecological receptors due to a lack of vegetation and the presence of buildings. In addition, surface water (the New River) is located approximately 475 feet to the northwest of the Site beyond Front Street and the CSX railyard. Based on the distance to the river, and the presence of the railroad between the Site and the river, it is unlikely that Site-related constituents in surface runoff would reach the river.

Given the absence of vegetation and development status of the Site, it is unlikely that the Site would serve as a suitable habitat for terrestrial species. Additionally, Site-related constituents are unlikely to reach the nearby surface water feature. As such, it can be concluded that there is no complete exposure pathway for ecological receptors, and the initial screening was adequate to determine that no substantial ecological risk exists.

5. Exposure Point Concentrations

This section presents the procedures that were used to develop source concentrations and exposure point concentrations (EPCs) for the COCs identified at the Site. For each COC in surface soil, a source concentration representative of Site conditions was estimated using statistical analysis. These source concentrations were subsequently used in the exposure modeling to estimate EPCs (Section 7).

5.1 Source Concentrations for the Direct Contact Exposure Pathways

The source concentration is defined as a measured concentration within a specific medium (e.g. soil). The EPC is derived by multiplying the source concentration by a transfer factor (also called a volatilization factor for the inhalation pathway). For exposure scenarios where the receptor is directly exposed to the medium where the concentration was measured (e.g. soil), the transfer factor is equal to 1. For exposure scenarios where the receptor is exposed to a medium different than where the concentration was measured (e.g. concentration is measured in soil and exposure is to air), the transfer factor is estimated through modeling. This modeled transfer factor is chemical-specific and medium-specific.

5.1.1 Media-Specific and Receptor-Specific Source Concentrations

The selection of source concentrations for each receptor is based on the potentially complete exposure pathways for that receptor. The following describes the selected source concentrations in soil for receptors based on the retained exposure pathways.

Based on the initial screening, only constituents in surface soil were retained for further assessment. Source concentrations were derived using statistical analysis and analytical data from on-Site surface soil samples (located at depths between 0-2 ft bgs), where possible. ProUCL version 5.1 was used to derive 95% upper confidence levels (UCLs) of the mean concentrations. Due to the limited number of detections of aroclor-1254, the maximum concentration was conservatively used to evaluate direct contact exposure to this constituent in soil. In accordance with WVDEP VRP guidance (WVDEP 2023a), the arithmetic mean was estimated for lead using on-Site surface soil samples.

Appendix C presents the soil datasets and statistical analysis for development of the source concentrations for on-Site surface soil. **Table 5-1** presents a summary of the source concentrations in on-Site surface soil.

5.2 Calculation of Exposure Point Concentrations for the Direct Contact Exposure Pathways

EPCs are calculated for each direct contact COC by multiplying the selected source concentrations by a transfer factor. For the incidental ingestion and dermal contact pathways, which involve actual contact with soil, the transfer factor is 1.0 (USEPA 2004). For inhalation of particulates emitted from

soil to outdoor air, the transfer factor was the USEPA default value of 7.4E-10 kg/m³ (1/1.36E+9 m³/kg) (USEPA 2024a).

For the exposure pathways involving inhalation of volatile constituents emitted from soil to outdoor air (either ambient or trench air), the transfer factor (analogous to a volatilization factor) relates measured concentrations in soil to estimated concentrations in outdoor air. For volatilization of constituents from soil to outdoor air, transfer factors are calculated following USEPA's soil screening guidance (USEPA 1996) and are presented in **Appendix D** of this document.

5.3 Site-specific Cleanup Level for Lead

Lead is typically regulated based on blood lead concentration (PbB). In lieu of evaluating risk using typical intake calculations and toxicity criteria, USEPA (2003) recommends the use of the ALM for adults or Integrated Exposure Uptake Biokinetic (IEUBK) model for children. In accordance with WVDEP VRP guidance (WVDEP 2023a), the arithmetic mean is used as the source concentration in soil rather than a UCL. The estimated arithmetic mean using on-Site surface soil samples analyzed for lead was 650.8 mg/kg. This mean concentration is above the selected industrial soil standard of 247 mg/kg assuming exposure to multiple sources of lead. In addition, the mean concentration exceeds the USEPA residential soil screening level of 100 mg/kg for Sites with multiple sources of lead (USEPA 2024a). A Site-specific cleanup level for lead was calculated for the on-Site recreational user, which is the more sensitive receptor as compared to the nonresidential receptors.

Both a child and adult on-Site recreational user are potential receptors that may be exposed to surface soil at the Site. Due to the child exposure being the more conservative exposure scenario, the IEUBK model was considered for use to assess lead exposure for the on-Site recreational user. However, one of the limitations of the IEUBK model is that it was developed to assess risk at residential Sites and assumes that 100% of the receptor's time is spent at the residence, leading to a continuous exposure (Syracuse Research Corporation [SRC] 2021). This is not the case for the on-Site recreational user as this receptor is assumed to spend a portion of time exposed to surface soil at the Site and a portion of time exposed to surface soil at their residence. Thus, a time-weighted exposure approach was used in accordance with USEPA guidance document "Assessing Intermittent or Variable Exposures at Lead Sites" (USEPA 2003).

This time-weighted exposure approach requires a minimum exposure of one day per week and minimum exposure duration of three months, both of which are exceeded with the exposure parameters selected for the recreational user in Section 7.1.3. The time-weighted exposure approach to calculating cleanup levels for soil requires a weighted soil lead concentration and a home soil lead concentration. The weighted soil lead concentration was set to 100 mg/kg based on the USEPA residential soil regional screening level for Sites with multiple sources of lead (USEPA 2024a) to verify that total lead exposure across soils from the Site and the home remain under the threshold. A value of 38 mg/kg was used as the home soil lead concentration, which was the 90th percentile background soil lead concentration in West Virginia (WVDEP 2023a). IEUBK defaults were used for the total time spent outdoors for each age range (SRC 2021), and the exposure parameters to the Site were the same as in Section 7.1.3. Threshold values were calculated for each age range recommended by the IEUBK model, and the conservative value of the age ranges was selected as

the final lead cleanup level. The calculation is presented in **Table 5-2**. This Site-specific cleanup level for lead was directly compared to the source concentration to determine risks from lead at the Site, which is discussed in Section 8.2.

6. **Constituent-Specific Parameters**

This section presents constituent-specific parameters used in the quantitative risk assessment including chemical properties, toxicological values, and absorption adjustment factors. Note that lead was not included in the tables presented in this section as there are no toxicity values available for lead, and lead is evaluated separately.

6.1 Chemical Properties

Table 6-1 presents the chemical properties required to complete the Site-specific risk calculations. This table also references the source for each chemical property. In accordance with WVDEP Guidance (WVDEP 2023a), the Risk Assessment Information System (RAIS) website (http://rais.ornl.gov) was utilized to obtain the majority of chemical properties. If a value was not available through the RAIS database, the USEPA RSL Chemical Specific Parameters table (dated May 2024) was utilized to obtain the chemical-specific property (USEPA 2024b).

6.2 Toxicological Values

COCs are quantitatively evaluated on the basis of their cancer and/or noncancer potential. Cancer slope factors (CSFs) and inhalation unit risks (IURs) are the toxicity values used to evaluate cancer health effects in humans. The reference doses (RfDs) and reference concentrations (RfCs) are the toxicity values used to evaluate noncancer (e.g. systemic) health hazards in humans.

CSFs and IURs are presented in **Table 6-2** for direct contact COCs. **Table 6-2** also indicates if the retained COCs have a mutagenic mode of action or not. As shown in **Table 6-2**, six of the retained COCs are mutagenic and include benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene. RfDs and RfCs for chronic effects associated with long-term exposures are provided in **Table 6-3** for the direct contact COCs.

Toxicity values were obtained from the following the hierarchy presented in Section 8.1.c.1 of the Rule (WVDEP 2021):

- Tier 1: Integrated Risk Information System (IRIS)
- Tier 2: Provisional Peer Reviewed Toxicity Values (PPRTVs)
- Tier 3: Other Toxicity Values

Tier 3 of the hierarchy includes several sources of toxicity values that are commonly consulted by the USEPA when a relevant toxicity value is not available from either IRIS or the PPRTV database. They may include:

- The Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs);
- The California Environmental Protection Agency toxicity values;

- PPRTV screening values from certain PPRTV assessment appendices; and
- The EPA Superfund Health Effects Assessment Summary Tables (HEAST).

RfDs and RfCs for subchronic effects associated with short-term exposures are provided in **Table 6-4** for the direct contact COC. These values were obtained from the PPRTVs, the ATSDR MRLs, or HEAST tables. If values were not available from these sources, then the RfDs or RfCs for chronic effects were used. In this risk assessment report, the construction worker is evaluated assuming a subchronic exposure.

In accordance with USEPA Risk Assessment Guidance for Superfund (RAGS) Part E (USEPA 2004), values representing the fraction of constituent absorbed in gastrointestinal tract (GIABS) were used to convert oral slope factors and reference doses to dermal slope factors and reference doses. The conversion factors used are presented in **Tables 6-2, 6-3, and 6-4**.

Tumor type/critical effect and target organ information (when available) for the COCs are presented in **Table 6-5** (CSFs and IURs), **Table 6-6** (chronic RfDs and RfCs), and **Table 6-7** (subchronic RfDs and RfCs).

6.3 Absorption Adjustment Factors

Absorption adjustment factors (*AAFs*) are needed for the various direct contact soil exposure pathways (i.e. oral and dermal exposure). **Table 6-8** presents the *AAFs* for the various direct contact soil exposure pathways used in the risk assessment.

Oral *AAF*s consider absorption and bioavailability. The oral *AAF*s were generally set to 1 mg/mg, which is a conservative assumption and implies that 100% of the constituent is absorbed into the blood stream as a result of ingestion. The only exception was for arsenic which has a USEPA-recommended oral *AAF* of 0.6 (USEPA 2024a).

Dermal *AAF*s reflect desorption of a constituent from soil and subsequent absorption across the skin and into the blood stream (USEPA 1989). The absorption adjustment factors for dermal contact with soil are constituent dependent. The dermal *AAF*s are 0.13 for PAHs, 0.03 for arsenic, and 0.14 for PCBs. For the other metals (i.e. antimony and iron), the *AAF* values for dermal contact with soil are not available because in accordance with RAGS-E, for inorganics, the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value (USEPA 2004).

7. Intake and Exposure Concentration Equations and Assumptions

This section presents the intake or absorbed dose equations and assumptions used to calculate constituent intakes for the ingestion and dermal contact exposure pathways as well as the equations and assumptions used to calculate exposure concentrations for the inhalation exposure pathways for applicable receptors. These equations were obtained from USEPA guidance (USEPA 1989) (USEPA 2009). The equations are presented in **Tables 7-1 through 7-5** for the on-Site maintenance worker, on-Site outdoor worker, on-Site construction worker, on-Site recreational user, and trespasser, respectively.

For constituents with a mutagenic mode of action for carcinogenicity, a separate set of mutagenic equations was utilized where appropriate. The intake for the mutagenic equation is adjusted based on age-dependent adjustment factors (*ADAFs*). The *ADAFs* for mutagenic COC is receptor-specific (based on their age). In this risk assessment, the mutagenic equations were utilized for the on-Site recreational user and trespasser, which are presented in **Table 7-4 and Table 7-5**.

7.1 Receptor-Specific Exposure Assumptions

This section presents receptor-specific exposure assumptions for each receptor. The receptorspecific exposure assumptions were selected using WVDEP recommended values, when available, selected from Appendix C (Section C.3.1 – Exposure Parameters) of the VRP Guidance Manual (WVDEP 2023a). Otherwise, alternative sources were used, such as recommended values from other state program guidance or USEPA guidance, or professional judgment (based on Site-specific information) to select appropriate receptor-specific exposure assumptions.

7.1.1 On-Site Maintenance Worker and On-Site Outdoor Worker

Table 7-1 presents the exposure parameters for the on-Site maintenance worker, and **Table 7-2** presents the exposure parameters for the on-Site outdoor worker. In general, the WVDEP (2023a) defaults for commercial/industrial receptors were utilized. For the maintenance worker, several exposure parameters were selected using professional judgement.

The difference between the maintenance worker and outdoor worker was the exposure frequency (*EF*) and exposure time (*ET*). For the maintenance worker, the *EF* was selected to be 72 days/year based on the professional judgment of 3 days per week for 6 months, which is assuming exposure during warm months of the year (May through October). An *ET* of 4 hours/day was selected for the time spent outdoors for the maintenance worker based on professional judgment. These *EF* and *ET* values assume the maintenance worker would a limited portion of their time in direct contact with surface soil performing activities such as landscaping. For the future outdoor worker, the WVDEP default commercial/industrial *EF* of 250 days/year and WVDEP default commercial/industrial *ET* of 8 hours/day were used, assuming a full-time outdoor worker scenario.

The remaining parameters are the same for both the maintenance worker and outdoor worker. The WVDEP default commercial/industrial exposure duration (*ED*) of 25 years was used. The soil

ingestion rate (*IR*) was set to the WVDEP default of 100 mg-soil/day for an outdoor worker. The total daily soil ingestion fraction (*FI*) was conservatively set at 1, which assumes that 100% of the receptor's daily soil intake occurs at the Site. The body weight (*BW*) for the worker was set at 80 kg and is based on the WVDEP default value for an adult. The exposed surface area (*SA*) for dermal contact with soil was 3,527 cm²/day based on the WVDEP default exposure assumption for a commercial/industrial receptor. The soil adherence factor (*AF*) of 0.12 mg-soil/cm² is also a WVDEP default exposure assumption for a commercial/industrial receptor. The fraction of the day in contact with soil (*FC*) was conservatively set at 1, which assumes that 100% of the receptor's daily soil contact occurs from soil at the Site.

Following WVDEP (2023a) guidance, the averaging time for carcinogenic effects (AT_c) was set at 25,550 days (USEPA 1989) for the ingestion and dermal exposure pathways and 613,200 hours for the inhalation pathway (based on a lifetime of 70 years) (USEPA 2009). The averaging time for noncarcinogenic effects (AT_{nc}) was set at 9,125 days for the ingestion and dermal exposure pathways and 219,000 hours for the inhalation exposure pathway.

7.1.2 On-Site Construction Worker

Table 7-3 presents the exposure parameters for the on-Site construction worker. The WVDEP (2023a) defaults for a construction/utility worker were utilized where available.

Based on the acreage of the Site (<0.5 acres), the WVDEP default construction/utility worker *EF* of 30 days/year was utilized. An *ET* of 8 hours/day was selected, which is also the WVDEP default value for a construction/utility worker. The USEPA (2023a) default *ED* of 1 year for a construction worker was used.

The soil *IR* was set to 330 mg-soil/day, which is the WVDEP default exposure assumption for a construction/utility worker. The total daily soil *FI* was conservatively set at 1, which assumes that 100% of the receptor's daily soil intake occurs at the Site. The *BW* for the construction/utility worker was set at 80 kg and is based on the WVDEP default value for an adult.

The exposed *SA* for dermal contact with soil was 3,527 cm²/day based on the WVDEP default exposure assumption for a construction/utility worker. The soil *AF* of 0.3 mg-soil/cm² is also a WVDEP default exposure assumption for a construction/utility worker. The *FC* was conservatively set at 1, which assumes that 100% of the receptor's daily soil contact occurs from soil at the Site.

Following WVDEP (2023a) guidance, the AT_c was set at 25,550 days (USEPA 1989) for the ingestion and dermal exposure pathways and 613,200 hours for the inhalation pathway (based on a lifetime of 70 years) (USEPA 2009). The averaging time for AT_{nc} was set at 350 days (WVDEP 2023a) for the ingestion and dermal exposure pathways and 8,400 hours (WVDEP 2023a) for the inhalation exposure pathway.

7.1.3 On-Site Recreational User

Table 7-4 presents the exposure parameters for the on-Site recreational user. In general, the WVDEP (2023a) defaults for residential adults/children and for a recreational user at a community park were utilized.

The WVDEP default *ED* of 26 years was used (default of 20 years for adults and 6 years for children). Note that for the mutagenic COC, the *ED* is segregated into age groups associated with the agedependent adjustment factor (*ADAF*). An *ADAF* of 10 is applied to ages 0-2 years, an *ADAF* of 3 is applied to ages 2-6 years and 6-16 years, and an *ADAF* of 1 is applied to ages greater than 16 years.

The WVDEP default *EF* of 52 days/year was utilized based on recreational activity at a community park. The WVDEP default *ET* of 3 hours/day was also selected based on recreational activity at a community park. The soil *IR* was set to the WVDEP default of 100 mg-soil/day for adults and 200 mg-soil/day for children. The total daily soil *FI* was conservatively set at 1, which assumes that 100% of the receptor's daily soil intake occurs at the Site. The *BW* for the recreational user was set at the WVDEP default values of 80 kg for an adult and 15 kg for a child. The exposed *SA* for dermal contact with soil was 3,450 cm²/day for a child and 8,890 cm²/day for adults based on the WVDEP defaults for a recreational user at a community park. The WVDEP default recreational user *AFs* of 0.2 mg-soil/cm² for adults and 0.4 mg-soil/cm² for children were used. The *FC* was conservatively set at 1, which assumes that 100% of the receptor's daily soil contact occurs from soil at the Site.

Following WVDEP (2023a) guidance, the AT_c was set at 25,550 days (USEPA 1989) for the ingestion and dermal exposure pathways and 613,200 hours for the inhalation pathways (based on a lifetime of 70 years) (USEPA 2009). The averaging time for AT_{nc} was set at 9,490 days for the ingestion and dermal exposure pathways (2,190 days for a child 0 to 6 years old and 7,300 days for an adult greater than 6 to 26 years old) and 227,760 hours for the inhalation exposure pathways.

7.1.4 Trespasser

Table 7-5 presents the exposure parameters for the trespasser. In general, exposure parameters were selecting using either the WVDEP (2023a) defaults for residential adults or based on professional judgement.

The trespasser is assumed to be a teenager/young adult. Therefore, this receptor was assumed to be between the ages of 13 and 26 years old. As a result, the *ED* was set to 13 years. For the mutagenic COC, the *ADAF* values that apply to this receptor are the *ADAF* of 3 (which applies to the age range of 13-16 years for this receptor) and the *ADAF* of 1 (which applies to the age range of 16-26 years for this receptor).

The *EF* was set to 52 days/year. This was based on professional judgement assuming exposure to soil may occur 2 days per week during the warmer months of May through October. The *ET* was set to 2 hours/day, which was also based on professional judgement.

Since this receptor is assumed to be older than 6 years old, the default exposure parameters for a child resident were not utilized in the risk calculation for the trespasser. The soil *IR* was set to the

WVDEP default of 100 mg-soil/day for adults. The total daily soil *FI* was conservatively set at 1, which assumes that 100% of the receptor's daily soil intake occurs at the Site. The *BW* for the trespasser was set at the WVDEP default value of 80 kg for an adult. The exposed *SA* for dermal contact with soil was $6,032 \text{ cm}^2/\text{day}$ based on the WVDEP default for adults. The WVDEP default *AF* of 0.07 mg-soil/cm² for adults was used. The *FC* was conservatively set at 1, which assumes that 100% of the receptor's daily soil contact occurs from soil at the Site.

Following WVDEP (2023a) guidance, the AT_c was set at 25,550 days (USEPA 1989) for the ingestion and dermal exposure pathways and 613,200 hours for the inhalation pathway (based on a lifetime of 70 years) (USEPA 2009). The averaging time for AT_{nc} was set at 4,745 days for the ingestion and dermal exposure pathways and 113,880 hours for the inhalation exposure pathway.

8. Risk Characterization

In this section of the risk assessment, the potential human health risks for complete exposure pathways are assessed. Potential risks due to exposures to COCs in soil from the Site are evaluated by integrating exposure assessments and toxicity data into quantitative expressions of cancer risk and noncancer health hazards. The equations to calculate risks and hazard indices (HIs) are included in **Tables 7-1 through 7-5**. These equations were obtained from USEPA guidance (USEPA 1989 and 2009).

8.1 Risk Results

Calculations of cancer risks and noncancer HIs for the on-Site maintenance worker, on-Site outdoor worker, on-Site construction worker, on-Site recreational user, and trespasser are presented in **Tables 8-1 through 8-5**, respectively. In accordance with Section 60-3-9.4.a and 60-3-9.4.b in the Rule (WVDEP 2021) and Section 4.6.2 in the WV VRP Guidance Manual (WVDEP 2023a), the risk benchmark value for industrial receptors is 1E-5, and the risk benchmark value for residential receptors (including recreational users) is 1E-6. The residential risk benchmark of 1E-6 was also used for the trespasser. The HI benchmark value is 1 irrespective of land use.

As presented in **Table 8-6**, the estimated total risk (1E-6) and total HI (0.2) for the on-Site construction worker are below the applicable WVDEP risk and HI benchmark values. For the on-Site maintenance worker, the total HI of 0.2 was below the benchmark of 1, but the total risk of 2E-5 exceeds the risk benchmark of 1E-5 for industrial receptors. For the on-Site outdoor worker, the total risk of 8E-5 exceeds the industrial risk benchmark of 1E-5; however, the total HI (0.5) is below the benchmark of 1. For the on-Site recreational user, the total HI of 2 exceeds the benchmark of 1, and the total risk of 1E-4 exceeds the risk benchmark of 1E-6 for residential receptors. For the total risk of 9E-6 exceeds the risk benchmark of 1, but the total risk of 9E-6 exceeds the risk benchmark of 1, but the total risk of 9E-6 exceeds the risk benchmark of 1, but the total risk of 9E-6 exceeds the risk benchmark of 1.

Although the total risks for the on-Site maintenance worker, on-Site outdoor worker, trespasser, and recreational user are within the programmatically acceptable range of 1E-4 and 1E-6 that would require a public notification, the total HI benchmark exceedance for the recreational user will need to be addressed.

8.2 Calculation of Lead Cleanup Level

For lead, a Site-specific cleanup level was calculated for the on-Site recreational user. The calculation was presented in **Table 5-2**. The Site-specific cleanup level was estimated to be 255 mg/kg. Several surface soil samples had concentrations that exceeded this value. There were no subsurface soil samples with concentrations that exceeded the Site-specific cleanup level. The estimated source concentration for lead (arithmetic mean of 650.8 mg/kg) based on surface soil samples collected from the Site exceeds the Site-specific cleanup level of 255 mg/kg and the industrial soil standard of 247 mg/kg utilized in this report. As a result, exposure to lead in soil for

the on-Site recreational user as well as the nonresidential receptors evaluated for this Site will need to be addressed.

8.3 Alternative Risk Analysis

The total risks for the on-Site maintenance worker, on-Site outdoor worker, and trespasser, and the total risk and HI for the on-Site recreational user, exceed the applicable WVDEP benchmarks and are driven by the incidental ingestion of soil exposure pathway. Arsenic and benzo(a)pyrene are the primary parameters that drive risk. In addition, the arithmetic mean concentration of lead in surface soil also exceeded the Site-specific cleanup level for the on-Site recreational user. The UCLs and arithmetic mean derived for the COCs in surface soil were skewed high due to observed concentrations in surface soil sample SS-04 (0-0.5'), which had concentrations at least an order of magnitude greater than other surface soil sample collected.

An alternative risk analysis was performed to determine if further mitigation measures would still be required after SS-04 (0-0.5') was mitigated. This analysis was completed by removing SS-04 (0-0.5') from the surface soil dataset used to derive UCLs and the arithmetic mean. The alternative UCLs (i.e. excluding SS-04) were used to ratio alternative risk and HI results for the maintenance worker, outdoor worker, trespasser, and recreational user. In addition, the alternative arithmetic mean was compared to the Site-specific cleanup level. The ratioed risk results are presented in **Table 8-7**. The supporting ProUCL input datasets and outputs are provided in **Appendix C**.

As shown in **Table 8-7**, the ratioed total risk of 3E-6 for the on-Site maintenance worker and ratioed total risk of 9E-6 for the on-Site outdoor worker are below the WVDEP risk benchmark of 1E-5 for industrial receptors. For the trespasser, the ratioed risk of 1E-6 is at the WVDEP risk benchmark of 1E-6 for residential receptors. For the on-Site recreational user, the ratioed total HI of 0.4 is below the benchmark of 1. However, the ratioed total risk of 1E-5 remains above the residential risk benchmark of 1E-6. For lead, as shown in the table below, the alternative arithmetic mean is above the Site-specific cleanup level for the on-Site recreational user.

Alternative Arithmetic Mean for Lead	Site-Specific Cleanup Level
391.8 mg/kg	255 mg/kg

Based on this alternative risk analysis, the risk for the on-Site recreational user will still require abatement via remedial measures or pathway elimination after surface soil sample SS-04 (0-0.5') has been mitigated. Although the ratioed total risk of 1E-5 for the recreational user is within the programmatically acceptable range of 1E-4 and 1E-6 that would require a public notification, the exposure to lead in soil for the recreational user will need to be addressed. In addition, the exposure to lead in soil for nonresidential receptors will also need to be addressed. A cap will be placed on the property and an LUC restriction will be established requiring excavation workers to follow a HASP during intrusive activities beneath the cap.

9. Uncertainty Analysis

The risk assessment process presented in this document uses a considerable number of assumptions to provide a conservative estimate of risks. During the risk assessment process, uncertainty and variability are inherent in the estimation of risks based on specific variables such as:

- Identification of COCs;
- Receptors and exposure pathways;
- Source concentrations;
- Exposure parameters;
- Toxicological values; and,
- Risk characterization.

A qualitative review is presented in this section describing some of the variables as applicable to the risk analysis and their potential effect on the final risk estimates, which overall result in a high degree of confidence that potential risks are not underestimated.

9.1 Identification of COCs

Identification of COCs relies, in part, on the information provided by the sampling and analytical program. Uncertainty in this regard is reduced as much as possible by following appropriate sample collection, handling, and analytical procedures and implementing quality assurance / quality control measures as part of the field and analytical programs. Additionally, sampling typically occurs with more emphasis on areas expected to have higher concentrations. Collectively, these measures are considered to reduce uncertainty and provide data such that Site-related risk estimates are not underestimated. Additionally, quality assurance sampling and analysis protocols are followed to obtain characterization data that is as representative, precise, and accurate as possible to be used for risk assessment purposes.

As discussed in Section 2.2 (Data Validation), it was determined that, in general, data were acceptable for use within the risk assessment with minor exceptions that would not affect the results of the assessment as rejections were not for Site-related COCs and/or were related to waste characterization purposes. As a result, the COC selection process utilized in the risk assessment is considered conservative with low uncertainty and would be expected to overestimate potential risks.

9.2 Exposure Assessment

There are three major areas of uncertainty associated with exposure assessment, including: 1) receptors and exposure pathways; 2) calculation of source concentrations; and 3) exposure parameter values used to estimate chemical intake. A discussion on each of these elements is presented below.

9.2.1 Receptors and Exposure Pathways

Defining the probable current and future land use of the Site carries with it some degree of uncertainty. Evaluating and understanding this uncertainty is important during the selection of potential receptors and exposure pathways. For this evaluation, the potential receptors and exposure pathways were based on current Site conditions (non-residential) and the assumption that the Site will potentially be used for non-residential use and recreational use in the future, limiting the uncertainty associated with these parameters. This is line with the proposed future use of the Site, which is commercial use and potential recreational use, such as an amphitheatre.

9.2.2 Source Concentrations

Risk assessments typically evaluate concentrations over an exposure area using statistical analysis. This approach treats exposures within the exposure area as equally possible. Risks associated with exposures are then assessed by evaluating those concentrations with exposure factors and the appropriate exposure/toxicity values. Typically, the source concentration for a specific chemical in a particular medium is based on the 95% UCL of the mean concentrations.

In the dataset, aroclor-1254 was only detected in two samples. As a result, there was not a sufficient number of detections to derive a UCL, and the maximum concentration was conservatively utilized as the source concentration for aroclor-1254. Using the maximum concentration for this constituent is conservative because it assumes that the receptor would spend the entire time at the Site in contact with this sample location. Although it is likely that receptors would be in contact with the sample location with the maximum concentration at some point at the Site; exposure with one sample location is more likely to occur during a small portion of the total time spent at the Site. Therefore, the use of the maximum concentration for this constituent may overestimate total calculated risks/hazards for receptors. However, this is also based on the assumption that the measured maximum concentration from the sample is representative of the maximum concentration for the population. In cases where the maximum sample concentration is not representative of the maximum concentration for the population, the calculated risks/hazards may not be overestimated.

For the evaluation of exposure to lead in surface soil, the arithmetic mean of surface soil samples was used in accordance with WVDEP VRP guidance (WVDEP 2023a). Typically a 95% UCL is used in estimation of risks, which is an upper bound estimate of the mean concentration. Use of a 95% UCL is health protective because there is a 5% chance that the mean is underestimated, assuming that appropriate statistical and sampling methods are used such that the coverage is not less than a 95% probability of encompassing the true mean (Interstate Technology & Regulatory Council; ITRC 2020). The use of an arithmetic mean as the source concentration introduces uncertainty in the estimation of risks because environmental samples are subject to variability in the data distribution, and the arithmetic mean may be biased. However, according to USEPA guidance (SRC 2021), the soil lead concentration should be the arithmetic mean of the concentration of lead in the soil that a child is likely to be exposed to, assuming the child has an equal chance of contacting soil throughout the decision unit. This provides a central point estimate for risk of an elevated blood lead level.

An updated version of the software, ProUCL 5.2, was released in June 2022. ProUCL 5.2 includes a change in the Decision Tree used to choose the Suggested UCL, which eliminates the use of the

Chebyshev and Bootstrap methods, while ProUCL 5.1 uses the Chebyshev or Bootstrap methods as the "Suggested UCL" when the data are non-parametric (e.g. did not adhere to normal, lognormal, or gamma distributions; Stuchal 2023). This change in the Decision Tree algorithm can reduce the coverage from 95% to 80%, effectively producing an 80% UCL instead of a 95% UCL (Stuchal 2023). Several states have not recommended the use of ProUCL 5.2 in calculating 95% UCLs, including West Virginia and Florida. Thus, ProUCL 5.1 was chosen to calculate 95% UCLs for this Site as it is more conservative and is less likely to underestimate potential risks in situations where the data does not follow a discernable distribution.

9.2.3 Exposure Parameters

Uncertainty is associated with the exposure parameter values used; however, assumptions are chosen to be conservative so as not to underestimate risk. For example, assumptions are made for the exposure time, frequency, and duration of potential chemical exposures, as well as for the quantity of material ingested, inhaled, or absorbed. In addition, assumptions are made for lithologic conditions at the Site for volatilization models to estimate transfer factors for the inhalation of volatiles exposure pathway. In general, assumptions are made based on reasonable maximum exposures and values are often specified by WVDEP, USEPA or other state guidance documents, or Site-specific information. Using default exposure parameters that are representative of upper bound estimates of exposure is conservative and may potentially overestimates risks and hazard indices.

9.3 Toxicity Values

A potentially large source of uncertainty is inherent in the derivation of the toxicity values (e.g. RfDs, RfCs, CSFs, and IURs). In many cases, data are extrapolated from animals to sensitive human subpopulations by the application of uncertainty factors to an estimated no-observed-adverse-effect-level (NOAEL) or lowest-observed-adverse-effect-level (LOAEL) for noncancer health effects. While designed to be protective, in many cases uncertainty factors are applied that likely overestimate the magnitude of differences that may exist between humans and animals, and among humans.

As discussed in the Guidelines for Carcinogen Risk Assessment (USEPA 2005), derivation of CSFs and IURs often involves linear extrapolation of effects at high doses to potential effects at lower doses commonly seen in environmental exposure settings. It is probable that the shape of the dose response curve for carcinogenicity varies with different chemicals and mechanisms of action. Toxicity values are established based on a point of departure value that is used in determining the shape of the linear response. Dependent upon whether or not concentrations in environmental media are above the point of departure may potentially underestimate calculated risks.

9.4 Risk Characterization

There is also uncertainty in assessing risks associated with a mixture of chemicals. In this assessment, the effects of exposure to each contaminant present have initially been considered separately. However, these substances occur together at the Site, and individuals may be exposed to mixtures of the chemicals. Predictions of how these mixtures of chemicals will interact must be

based on an understanding of the mechanisms of such interactions. Individual chemicals may interact in the body, yielding a new toxic component or causing different effects at different target organs.

Suitable data are not currently available to rigorously characterize the effects of chemical mixtures. Consequently, as recommended by USEPA, chemicals present at the Site are assumed to act additively, and potential health risks are evaluated by summing excess lifetime cancer risks and calculating HIs for noncancer health effects (USEPA 1989). This approach to assessing risk associated with mixtures of chemicals assumes that there are no synergistic or antagonistic interactions among the chemicals and that all chemicals have the same toxic endpoint and mechanisms of action. To the extent that these assumptions are correct, the actual risks could be underestimated or overestimated.

Current methodologies to evaluate exposure to lead cannot be integrated into the assessment of cumulative risks and hazard indices for other COCs in environmental media at the Site. As a result, at Sites where lead is retained as a COC along with other constituents, the cumulative impacts of exposures to lead and other constituents that act on the same target organs/systems may potentially be underestimated.

9.5 Conclusion of Uncertainty Analysis

Based on the above uncertainty analysis, the risk assessment employed multiple conservative assumptions, which, when combined, produce an additive conservative effect throughout the process, resulting in an overestimation of the potential risk. As a result of the uncertainties described above, this risk assessment should not be construed as presenting absolute risks or hazards. Rather, it is a conservative analysis intended to indicate the potential for adverse impacts to occur based on reasonable upper bound exposure that is well above the average but still within the range of possible exposures. The estimated cancer risks in this report are excess cancer risks that do not represent estimated levels for the population as a whole, but simply represent excess cancer risks above baseline levels associated with the Site.

9.6 Statement of Limitations

This document is prepared solely for the Site in Hinton, Summers County, West Virginia. This report was prepared based on the information supplied by GEG. The results of the risk assessment presented in this report apply to the existing and reasonably foreseeable Site conditions at the time of this assessment. This risk assessment is based only on the current Site conditions from the historic on-Site release(s) defined by the analytical data and does not assess potential future releases. Changes in the conditions of the property may occur with time due to natural processes or works of man at the Site or on adjacent properties. Changes in applicable standards and toxicity criteria may also occur as a result of legislation or the broadening of knowledge. As a result, if the exposure assumptions and/or assessment change in the future for this Site, the results of this risk assessment analysis may not apply and will require revalidation. Based on the evolving nature of risk assessments, this risk assessment shall be submitted to the appropriate regulatory agency within a reasonable timeframe (e.g. approximately three months from the completion date of this

document) such that it aligns with recent risk assessment methodologies and guidelines have been used at the time this risk assessment was completed. Worley Consulting is not responsible for the misinterpretation or misuse of this risk assessment analysis.

10. References

Cardwell 1968. Geologic Map of West Virginia, West Virginia Geological and Economic Survey, 1968.

GEG 2024. Site Assessment Report for the Former Hinton Ice House. January 2024.

ITRC 2020. Incremental Sampling Methodology (ISM) Update, Interstate Technology & Regulatory Council, October 2020.

SRC 2021. User's Guide for the Integrated Exposure Uptake biokinetic Model for Lead in Children (IEUBK) Version 2.0. Prepared by Syracuse Research Corporation (SRC), Inc. May 2021.

Stuchal 2023. Re: Review of ProUCL Version 5.2. Leah D. Stuchal, Ph.D. University of Florida, Center for Environment & Human Toxicology. January 10, 2023.

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989.

USEPA 1996. Soil Screening Guidance: User's Guide. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, EPA/540/R-96/018, OSWER 9355.4-23, April 1996.

USEPA 2003. Assessing Intermittent or Variable Exposures at Lead Sites. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency. EPA-540-R-03-008. November 2003.

USEPA 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.

USEPA 2005. Guidelines for Carcinogen Risk Assessment. U.S. Environmental Protection Agency. EPA/630/P-03/001B, March 2005.

USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009.

USEPA 2024a. Regional Screening Level User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide. May 2024.

USEPA 2024b. Regional Screening Levels Chemical Specific Parameters Table. U.S. Environmental Protection Agency. <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables. May 2024</u>.

WVDEP 2021. Voluntary Remediation and Redevelopment Rule. Title 60, Legislative Rule, Department of Environmental Protection, Secretary's Office, Series 3, Effective June 1, 2021.

WVDEP 2023a. Voluntary Remediation Program Guidance Manual. West Virginia Department of Environmental Protection, October 2023.

WVDEP 2023b. *De Minimis* & Relevant Benchmarks Table. November 30, 2023.WVDEP 2024. Lead Soil Standard Updates: A Deep Dive Into Proposed Changes. West Virginia Department of Environmental Protection, presented by Ross Brittain, PhD, April 11, 2024.

Table 2-1A Surface Soil Analytical Data and Comparison to De Minimis Screening Values - PCBs Human Health and Ecological Risk Assessment Former Hinton Ro House Hinton, West Vinginia

	Sample Name Sample Location Sample Depth Sample Date Sample Date Surface/Subsurface Saturated/Unsaturated On-Site/Off-Site CAS No.	WVDEP Residential Soil De Minimis Standard (µg/kg) Res	WVDEP Industrial Soil De Minimis Standard (µg/kg) Ind	SS-01 SS01 0-0.5' 10/17/2017 Field Sample Surface Unsaturated Off-Site	SS-02 SS02 0-0.5' 10/17/2017 Field Sample Surface Unsaturated Off-Site	SS-03 SS03 0-0.5' 10/17/2017 Field Sample Surface Unsaturated On-Site	SS-04 SS04 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-05 SS05 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-06 SS06 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-07 SS07 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-08 SS08 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-09 SS09 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-10 SS10 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-11 SS11 0-0.5' 10/16/2017 Field Sample Surface Unsaturated On-Site	SS-12 SS12 0-0.5' 10/17/2017 Field Sample Surface Unsaturated On-Site	SS-13 SS07 0-0.5' 10/16/2017 Duplicate Surface Unsaturated On-Site	SS-14 SS01 0-0.5' 10/17/2017 Duplicate Surface Unsaturated On-Site	SS-15 SS15 0-2' 7/14/2022 Field Sample Surface Unsaturated On-Site	FD-1 SS15 0-2' 7/14/2022 Duplicate Surface Unsaturated On-Site
Polychlorinated Biphenyls (µg/kg)																		
Aroclor-1016	12674-11-2	5,500	82,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	< 230	< 77
Aroclor-1221	11104-28-2	260	12,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	< 230	< 77
Aroclor-1232	11141-16-5	220	10,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	< 230	< 77
Aroclor-1242	53469-21-9	310	15,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	< 230	< 77
Aroclor-1248	12672-29-6	310	15,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	< 230	< 77
Aroclor-1254	11097-69-1	320	15,000	< 75	< 73	< 72	< 86	< 81 UJ	< 76	350 /Res	< 71	< 77	NA	< 73	180	270	< 75	< 230	< 77
Aroclor-1260	11096-82-5	330	16,000	< 75	< 73	45 J	< 86	< 81 UJ	< 76	140	< 71	< 77	NA	< 73	110	130	< 75	< 230	< 77
Aroclor-1262	37324-23-5	Nav	Nav	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	NA	NA
Aroclor-1268	11100-14-4	Nav	Nav	< 75	< 73	< 72	< 86	< 81 UJ	< 76	< 74	< 71	< 77	NA	< 73	< 74	< 71	< 75	NA	NA
Criteria Exceeded in Sample										Per									

Notes:

J - onlysis in present at an ordinated concentration between the MKK, and Report Limit
U - Understeed at an ordinated quantitation intrib tensor of a quality control outline.
NAt-set analyzed
National Concentration of the NUMEP reducted and de minimis standards. Describe 2022
Ref. - Inducates exceedince of the WUMEP reducted and de minimis standard. Describer 2022
Ref. - Inducates exceedince of the WUMEP reducted and ad de minimis standard. Describer 2022

Table 2-1B Subsurface Soli Analytical Data and Comparison to De Minimis Screening Values - PCBs Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name			SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	FD-2
	Sample Location			SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	SS15	SS15
	Sample Depth			7.0-9.3'	13.5-15.0'	1.9-3.8'	5.3-7.0'	6.0-7.0'	11.5-13.0'	4.0-6.0'	9.2-10.0'	2.0-7.1'	4.5-6.1'	9.3-11.1'	6-8'	6-8'
	Sample Date		WVDEP	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/17/2017	10/16/2017	10/17/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Dunlicate											
	Surface/Subsurface	Residential Soil	De Minimis	Subsurface	Subsurface											
1	Saturated/Unsaturated	De Minimis	Standard	Unsaturated	Unsaturated											
	On-Site/Off-Site	Standard (ug/kg)	(ug/kg)	Off-Site	On-Site	On-Site										
	CAS No.	Res	Ind													
Polychlorinated Biphenyls (µg/k	(g)															
Aroclor-1016	12674-11-2	5,500	82,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1221	11104-28-2	260	12,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1232	11141-16-5	220	10,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1242	53469-21-9	310	15,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1248	12672-29-6	310	15,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1254	11097-69-1	320	15,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1260	11096-82-5	330	16,000	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	< 74	< 74
Aroclor-1262	37324-23-5	Nav	Nav	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	NA	NA
Aroclor-1268	11100-14-4	Nav	Nav	< 74	< 77	< 77	< 75	< 75	< 75	< 75	< 78	< 76	< 77	< 78	NA	NA
Criteria Exceeded in Sample																

Notes: Abbreviations used in comparisons: NA:- sort analysed Nav:- set valiable Ras-- Indicates: Ras-- Indicates: And - Indicates: exceedance of the WYDEP inductial soil de minimis standard, December 2022 And - Indicates: exceedance of the WYDEP inductial soil de minimis standard, December 2022

Table 2-1C Surface Soil Analytical Data and Comparison to De Minimis Screening Values - Metala Human Health and Ecological Risk Assessment Former Hinton Les House Hinton, West Virginia

	Sample Name				SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	FD-1
	Sample Location				SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS07	SS01	SS15	SS15
	Sample Depth				0-0.5'	0-0.5'	0-0.5	0-0.5'	0-0.5	0-0.5	0-0.5	0-0.5	0-0.5'	0-0.5	0-0.5'	0-0.5	0-0.5'	0-0.5	0-2'	0-2'
	Sample Date	WVDEP	WVDEP		1017/2017	10/1//2017	10/1//201/	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/1//2017	10/10/2017	10/1//2017	//14/2022	//14/2022
	Sample Type	Residential Soil	Industrial Soil		Field Sample	Duplicate	Duplicate	Field Sample	Duplicate											
	Surface/Subsurface	De Minimis	De Minimis	WVDEP Default	Surface	Surface	Surface	Surface	Surface											
	Saturated/Unsaturated	Standard	Standard	Standard	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated											
	CAS No.	(mg/kg)	(mg/kg)	Background Value (mg/kg)	On-Site	On-site	On-Site	On-Site	On-Site	On-Sile	On-Site	On-Site	On-Site	On-Site	On-Sile	Un-Site	On-Site	Ou-Site	On-Site	On-Site
Metals (mg/kg)	Crustine.	int a	ind	fanc (mg/kg)																
Mercury	7439.97.6	3.1	31	0.09	0.11	0.23	0.076	0.98	0.54 .1+	0.25	0.15	0.15	0.41	NA	0.015 J	0.14	0.17	0.13	0.25 4	0.45
Aluminum	7429-90-5	77.000	1.000.000	77.120	5600	7700	4600	7100	9200	6100	5900	5200	8500	NA	3500	6200	5600	6500	NA	NA
Antimony	7440-36-0	31	470	0.89	< 4.3 U	2.8	< 4.5 U	49 /Res	24	10	< 4.1	3.3	1.4	NA	< 3.7	2.7 J+	1.8	2.8 J	NA	NA
Arsenic	7440-38-2	0.68	30	13.1	7.3 /Re	s 13 J+/Res	5.8 /Res	400 J+/Ind	52 J+/Inc	d 33 J+/In	4.4 /Re	s 20 J+/Res	10 /Res	NA	4.4 /Ret	s 7.6 /Res	6.1 /Res	7.6 /Res	9.7 /Res	16 /Res
Barium	7440-39-3	15,000	220,000	565	280	86	170	1200	630	240	370	230	170	NA	36	190	470	300	170	240
Beryllium	7440-41-7	160	2,300	2.8	0.28	0.44	0.43	0.91	1.0	0.64	< 0.17 U	0.35	0.85	NA	0.11 J	0.44	0.22	0.32	NA	NA
Cadmium	7440-43-9	37	530	0.5	< 8.6 U	< 0.80 U	< 9.1 U	< 8.5 U	2.5 J+	1.4 J+	< 8.3 U	1.1 J+	< 0.77 U	NA	< 7.4 U	1.9	2.6	< 8.9 U	0.60 J	0.72 J
Calcium	7440-70-2	Nav	Nav	3,300	160000	2900	130000	7100	22000	10000	190000	39000	65000	NA	260000	58000	270000	150000	NA	NA
Chromium*	7440-47-3	120,000	1,000,000	57.4	29	17 J+	48	26 J+	32 J+	20 J+	19	22 J+	13	NA	8.7	24 J-	16	26	10 J+	17 J*
Cobalt	7440-48-4	23	350	23.8	6.5	9.3	6.6	15	12	8.3	5.8	5.6	10	NA	4.2	7.1	5.1	5.8	NA	NA
Copper	7440-50-8	3,100	47,000	27.5	110	70	40	1100	210	210	68	63	33	NA	12	91	51	94	NA	NA
Iron	7439-89-6	55,000	820,000	39,380	28000	23000	27000	120000 /Res	61000 J/Res	33000	19000	29000	13000	NA	8000	19000	18000	32000	NA	NA
Lead	7439-92-1	100**	247***	38	350 /Inc	240 /Res	170 /Res	3500 /Ind	1400 /Ind	610 /Ind	100	740 /Ind	130 /Res	NA	9_3	180 /Res	110 /Res	310 /Ind	260 J*/Ind	370 /Ind
Magnesium	7439-95-4	Nav	Nav	5,640	7900	600 J+	6300	620	1600	1300	9300	2700	2100	NA	12000	3900	11000	7000	NA	NA
Manganese	7439-96-5	1,800	26,000	1,998	320	280	360	630	700	550	230	380	1100	NA	160	310	310	300	NA	NA
Nickel	7440-02-0	1,500	22,000	34.4	17	7.3 J+	19	30	20	12	16	6.8	8.2	NA	10	14 J+	15	13	NA	NA
Potassium	7440-09-7	Nav	Nav	19,880	640 J+	620 J+	580 J+	330 J+	680 J+	530 J+	540 J+	690 J+	430	NA	750	560 J+	590	660	NA	NA
Selenium	7782-49-2	390	5,800	0.8	1.5	1.7	1.7	3.2	3.9	2.1	1.4 J*	1.7	2.0	NA	1.7	2.0	4.3 J	2.5	1.5	1.3
Silver	7440-22-4	390	5,800	1	< 0.43	< 0.40	< 0.45	0.16 J.J+	< 0.43	< 0.43	0.18 J.J.	< 0.44	< 0.38	NA	< 0.37	< 0.42	< 0.35	< 0.44	0.28 J	0.44 J
Sodium	7440-23-5	Nav	Nav	3,600	140 J+	25	110 J+	210 J+	4100 J+	74 J+	160 J+	290 J+	1200	NA	180	67	280 B,J*	120	NA	NA
Thallium	7440-28-0	0.78	12	0.8	< 8.6	< 0.80	< 9.1	< 8.5	< 0.86	< 0.86	< 8.3	< 0.87	< 0.77	NA	< 7.4	< 0.85	< 0.71	< 8.9	NA	NA
Vanadium	7440-62-2	460	8,400	98.8	13 J+	24 J+	21 J+	19 J+	29 J+	20 J+	12 J+	15 J+	20	NA	7.4	24 J+	11	18	NA	NA
Zinc	7440-66-6	23,000	350,000	103	990 B	150 B,J+	200 B,J+	3100 B	1700 B	660 B,J+	970 B	640 B,J+	210	NA	110	860	1100	820	NA	NA
Contamin Descendend im Community					(Der And	/0	/D	/D /II	(Dec fleed	(Dec ded	(D	(Daw (I and	/D		/0	/D	/0	(Dec find	(Dec (I a d	(Deer/Ieed

Carbon (and a strange)
 Carbon (and a st

Table 2-1D Subsurface Soll Analytical Data and Comparison to De Minimis Screening Huse- Metals Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Vingina

	Sample Name				SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	FD-2
	Sample Location				SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	\$\$15	SS15
	Sample Depth				7.0-9.3'	13.5-15.0'	1.9-3.8'	5.3-7.0'	6.0-7.0'	11.5-13.0'	4.0-6.0'	9.2-10.0'	2.0-7.1'	4.5-6.1'	9.3-11.1'	6-8'	6-8'
	Sample Date		WVDEP		10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/17/2017	10/16/2017	10/17/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	WVDEP Default	Field Sample	Duplicate											
	Surface/Subsurface	Residential Soil	De Minimis	Standard	Subsurface	Subsurface											
	Saturated/Unsaturated	De Minimis	Standard	Background	Unsaturated	Unsaturated											
	On-Site/Off-Site	Standard (mg/kg)	(mg/kg)	Value	Off-Site	On-Site	On-Site										
	CAS No.	Res	Ind	(mg/kg)													
Metals (mg/kg)																	
Mercury	7439-97-6	3.1	3.1	0.09	0.040	0.037	0.048	0.064	0.12	0.022	0.052	0.025	0.038	0.059	0.045	0.024	0.037
Aluminum	7429-90-5	77,000	1,000,000	77,120	9700	9500	9800	7800	6300	7800	6700	12000	9600	7600	11000	NA	NA
Antimony	7440-36-0	31	470	0.89	1.8	1.4	1.6	1.7	5.7	1.1	1.1	2.0	1.4	1.1	1.1	NA	NA
Arsenic	7440-38-2	0.68	30	13.1	13 J+/Res	7.7 J+/Res	9.2 J+/Re	10 J+/Res	17 J+/Re	s 8.0 J+/Re	5.7 J+/Re	s 17 /Res	7.5 J+/Res	8.4 /Res	6.8 /Res	6.7 J-/Res	4.0 J*/Res
Barium	7440-39-3	15,000	220,000	565	33	94	21	37	98	40	32	27	24	54	46	67	57
Beryllium	7440-41-7	160	2,300	2.8	0.42	< 0.18 U	< 0.19 U	0.23	0.38	0.29	< 0.15 U	0.44	< 0.18 U	0.18	0.14 J	NA	NA
Cadmium	7440-43-9	37	530	0.5	< 0.83 U	< 0.89	< 0.94	< 0.89	< 0.92 U	< 0.82 U	< 0.73	< 0.75	< 0.89	< 0.84 U	< 0.83 U	< 0.75	< 0.74
Calcium	7440-70-2	Nav	Nav	3,300	860	780	1200	1200	4000	920	1200	630	480	1200	1000	NA	NA
Chromium*	7440-47-3	120,000	1,000,000	57.4	22 J+	11 J+	12 J+	21 J+	16 J+	11 J+	14	11	15 J+	15	12	13 J+	12
Cobalt	7440-48-4	23	350	23.8	8.1	3.8	5.5	8.2	6.1	4.1	10	15	5.8	14	4.1	NA	NA
Copper	7440-50-8	3,100	47,000	27.5	12	9.2	8.5	8.1	41	8.0	4.3	13	7.9	6.1	9.1	NA	NA
Iron	7439-89-6	55,000	820,000	39,380	31000	24000	24000	26000	35000	19000	17000	35000	24000	18000	17000	NA	NA
Lead	7439-92-1	100**	247***	38	11	8.3	11	21	130 /Res	15	12	11	9.7	13	9.4	22 J*	8.7 J*
Magnesium	7439-95-4	Nav	Nav	5,640	1400	620	730	530	780	1200	450	1200	710	610	1200	NA	NA
Manganese	7439-96-5	1,800	26,000	1,998	210	71	130	580	370	49	460	390	140	470	65	NA	NA
Nickel	7440-02-0	1,500	22,000	34.4	11	5.1	4.4	3.0	10	7.9	2.7	9.0	4.7	3.5	6.7	NA	NA
Potassium	7440-09-7	Nav	Nav	19,880	490 J+	450 J+	540 J+	380 J+	430 J+	450 J+	340 J+	550	530 J+	430	590	NA	NA
Selenium	7782-49-2	390	5,800	0.8	1.2	1.3	1.1	1.7	1.8	1.2	0.96	2.2	1.3	1.9	2.0	0.53 J	0.38 J
Silver	7440-22-4	390	5,800	1	< 0.41	< 0.45	< 0.47	< 0.44	< 0.46	< 0.41	< 0.36	< 0.38	< 0.45	< 0.42	< 0.42	0.18 J	0.18 J
Sodium	7440-23-5	Nav	Nav	3,600	27	92 J+	31	340 J+	36 J+	< 16 U	26 J+	39	< 18 U	19	23	NA	NA
Thallium	7440-28-0	0.78	12	0.8	< 0.83	< 0.89	< 0.94	< 0.89	< 0.92	< 0.82	< 0.73	< 0.75	< 0.89	< 0.84	< 0.83	NA	NA
Vanadium	7440-62-2	460	8,400	98.8	22 J+	23 J+	24 J+	26 J+	20 J+	22 J+	23 J+	21	23 J+	25	27	NA	NA
Zinc	7440-66-6	23,000	350,000	103	36 B,J+	23 B,J+	24 B,J+	26 B,J+	470 B,J+	27 B,J+	16 B,J+	39	24 B,J+	22	41	NA	NA
Criteria Exceeded in Sample					/Res	/Res											

Linter Lexceeded in Sample

Amery

J. and by process of an existing concentration between the MRL and Report Land

I. Analysis dense of the associated Methadows the Report Land

P. Analysis dense of the associated Methadows the Report Land

P. Analysis dense of the associated Methadows the Report Land

P. Analysis dense of the posterial Laphane

J. Analysis dense of the posterial Laphane

Mathematication and the traduct densmin for multiple sources of final

M. Analysis

N. B. Analysis

Mathematication and the composited for MINEP solutional for multiple sources of final

N. Analysis

Mathematication and the composited

MINEP solution laphane

MINEP solution

MINE and MINEP

MINEP solution

MINE and MINEP solution

MINE a

8:44 PM on 8/9/2024

Table 2-1A thru 2-1L - Soil Dana Tables_071124.xks C/01_Worley/Projects/GEG - Hinton Ice House/HERA response to comments/Revised HHERA Report(Tables/

Table 2-1E Surface Soil Analytical Data and Comparison to De Minimis Screening Values - Herbicides Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Vinginis

	Sample Name			SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	FD-1
	Sample Location			SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS07	SS01	SS15	SS15
	Sample Depth			0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-2'	0-2'
	Sample Date		WVDEP	10/17/2017	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Duplicate	Duplicate	Field Sample	Dunlicate											
	Surface/Enhourfoce	Desidential Sail	Do Minimio	Surface	Sunfan	Sunfano	Surface	Surface	Sunfam	Sunfam	Sunfan	Funfam	Surface	Sunfran	Furface	Surface	Surface	Surface	Sunface
	Surface/Subsurface	De Minimie	Standard	Uncertained	Unsetunated	Unsaturated	Uncetuneted	Uncotunated	Uncertained	Unseturated	Uncertained	Unsetworted	Unsaturated	Uncertained	Uncotworted	Uncotunated	Uncotword	Unsetunated	Unsetweeted
	On Site/Off Site	Standard (ug/la)	(un/ha)	Off Site	Official	On Site	On Site	On Site	On Site	On Site									
	CAS No	Den	(µg/kg)	On-Sac	On-Site	Oussie	Ou-suc	Ou-Suc	Ou-Suc	Oussue	On-She	On-Suc	Ou-one	Ou-sue	On-Suc	Ou-oue	Ou-suc	Ou-Suc	Ou-Suc
	CA5 10.	KO	IIIG											1					
nerbicides (µg/kg)																			
2,4-DB	94-82-6	1,900,000	25,000,000	< 76.1 UJ	< 74.0 UJ	< 73.1 UJ	< 84.4 UJ	< 82.4 UJ	< 79.2 UJ	< 72.9 UJ	< 73.0 UJ	< 75.0 UJ	< 76.7 UJ	< 73.7 UJ	< 74.9 UJ	< 72.4	< 78.8	< 133	< 125
2,4,5-T (Trichlorophenoxyacetic acid)) 93-76-5	630,000	8,200,000	< 76.1 UJ	< 74.0 UJ	< 73.1 UJ	< 84.4 UJ	< 82.4 UJ	< 79.2 UJ	< 72.9 UJ	< 73.0 UJ	< 75.0 UJ	< 76.7 UJ	< 73.7 UJ	< 74.9 UJ	< 72.4 U	< 78.8 UJ	< 226	< 213
2,4-D (Dichlorophenoxyacetic acid)	94-75-7	700,000	9,600,000	< 76.1 UJ	< 74.0 UJ	< 73.1 UJ	< 84.4 UJ	< 82.4 UJ	< 79.2 UJ	< 72.9 UJ	< 73.0 UJ	< 75.0 UJ	< 76.7 UJ	< 73.7 UJ	< 74.9 UJ	< 72.4 UJ	< 78.8 UJ	< 133	< 125
Silvex (2,4,5-TP)	93-72-1	510,000	6,600,000	< 76.1 UJ	< 74.0 UJ	< 73.1 UJ	< 84.4 UJ	< 82.4 UJ	< 79.2 UJ	< 72.9 UJ	< 73.0 UJ	< 75.0 UJ	< 76.7 UJ	< 73.7 UJ	< 74.9 UJ	< 72.4 UJ	< 78.8 UJ	< 133	< 125
Dalapon	75-99-0	1,900,000	25,000,000	NA	NA	NA	< 133	< 125											
Dicamba	1918-00-9	1,900,000	25,000,000	NA	NA	NA	< 133	< 125											
Dichloroprop	120-36-5	Nav	Nav	NA	NA	NA	< 133	< 125											
Dinoseb	88-85-7	63,000	820,000	NA	NA	NA	< 226 UJ	< 213 UJ											
MCPA	94-74-6	32.000	410.000	NA	NA	NA	< 16000	< 15000											
MCPP	7085-19-0	Nav	Nav	NA	NA	NA	< 16000	< 15000											
Pentachlorophenol	87-86-5	1.000	40.000	NA	NA	NA	< 133	< 125											
Criteria Exceeded in Samula		,,																	

Notes: UJ per data validation report, data are to be used cautionsly as they are estimated NA - not analyzed Nav - not available

8:44 PM on 8/9/2024

Abbreviations used in comparisons: Res - Indicates exceedance of the WVDEP residential soil de minimis standard, December 2022 And - Indicates exceedance of the WVDEP industrial soil de minimis standard, December 2022

Table 2-1F Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values - Herbicides Human Health and Ecological Rick Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name			SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	F	D-2
	Sample Location			SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	SS15	5	5515
	Sample Depth			7.0-9.3'	13.5-15.0'	1.9-3.8'	5.3-7.0'	6.0-7.0'	11.5-13.0'	4.0-6.0'	9.2-10.0'	2.0-7.1'	4.5-6.1'	9.3-11.1'	6-8'	1 6	6-8'
	Sample Date		WVDFP	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/17/2017	10/16/2017	10/17/2017	10/17/2017	7/14/2022	7/1/	4/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Du	plicate											
	Surface/Subsurface	Residential Soil	De Minimis	Subsurface	Sub	surface											
Satu	urated/Unsaturated	De Minimis	Standard	Unsaturated	Unsz	aturated											
	On-Site/Off-Site	Standard (ug/kg)	(ug/kg)	Off-Site	On-Site	Or	n-Site										
	CAS No.	Res	Ind														
Herbicides (µg/kg)																	
2,4-DB	94-82-6	1,900,000	25,000,000	< 75.3 UJ	< 77.5 UJ	< 77.6 UJ	< 75.7 UJ	< 75.1 UJ	< 75.3 UJ	< 76.2 UJ	< 76.7 UJ	< 75.3 UJ	< 77.6 UJ	< 78.4	< 112	< '	117
2,4,5-T (Trichlorophenoxyacetic acid)	93-76-5	630,000	8,200,000	< 75.3 UJ	< 77.5 UJ	< 77.6 UJ	< 75.7 UJ	< 75.1 UJ	< 75.3 UJ	< 76.2 UJ	< 76.7 UJ	< 75.3 UJ	< 77.6 UJ	< 78.4 UJ	< 191	< '	199
2,4-D (Dichlorophenoxyacetic acid)	94-75-7	700,000	9,600,000	< 75.3 UJ	< 77.5 UJ	< 77.6 UJ	< 75.7 UJ	< 75.1 UJ	< 75.3 UJ	< 76.2 UJ	< 76.7 UJ	< 75.3 UJ	< 77.6 UJ	< 78.4 UJ	< 112	< '	117
Silvex (2,4,5-TP)	93-72-1	510,000	6,600,000	< 75.3 UJ	< 77.5 UJ	< 77.6 UJ	< 75.7 UJ	< 75.1 UJ	< 75.3 UJ	< 76.2 UJ	< 76.7 UJ	< 75.3 UJ	< 77.6 UJ	< 78.4 UJ	< 112	< '	117
Dalapon	75-99-0	1,900,000	25,000,000	NA	< 112	<	117										
Dicamba	1918-00-9	1,900,000	25,000,000	NA	< 112	<	117										
Dichloroprop	120-36-5	Nav	Nav	NA	< 112	< '	117										
Dinoseb	88-85-7	63,000	820,000	NA	< 161 UJ	< '	199 UJ										
MCPA	94-74-6	32,000	410,000	NA	< 13500	< 14	4000										
MCPP	7085-19-0	Nav	Nav	NA	< 13500	< 1/	4000										
Pentachlorophenol	87-86-5	1,000	40,000	NA	< 112	<	117										
Criteria Exceeded in Sample																	

Notes: UJ - per data validation report, data are to be used cautiously as they are estimated NA - not analyzed NA wavelable.

NW - nan summer: Abbreviations used in comparisons: //Res - Indicates exceedance of the WVDEP residential soil de minimis standard, December 2022 /Ind - Indicates exceedance of the WVDEP industrial soil de minimis standard, December 2022

Table 2-1G Surface Soil Analytical Data and Comparison to De Minimis Screening Values - VOCs Human Health and Ecological Risk Assessment Former Hinton Ro House Hinton, Nest Vingina

	Sample Name			SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	FD-1
	Sample Location			SS01	SS02	SS03	SS04	\$\$05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS07	SS01	SS15	\$\$15
	Sample Depth			0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-2'	0-2'
	Sample Date		WVDEP	10/17/2017	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Duplicate	Duplicate	Field Sample	Duplicate						
	Surface/Subsurface	Residential Soil	De Minimis	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface						
	Saturated/Unsaturated	De Minimis	Standard	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated						
	On-Site/Off-Site	Standard (µg/kg)	(µg/kg)	Off-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
	CAS No.	Res	Ind																
Volatile Organic Compounds (µg	z/kg)																		
1,1,1-Trichloroethane	71-55-6	640,000	640,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,1,2,2-Tetrachloroethane	79-34-5	640	28,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48 UJ	< 49
1,1,2-Trichloroethane	79-00-5	1,200	6,800	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,1,2-Trichlorotrifluoroethane	76-13-1	910,000	910,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,1-Dichloroethane	/5-54-5	3,800	170,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,1-Dichloroethene	/5-35-4	240,000	1,100,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,2,3-Theniorobenzene	87-01-0	1N2V	200.000	< 41 41	NA	NA	NA	NA	2 44	40	- 38	- 40	- 39	NA	NA	NA	NA	< 160 - 160	< 100 x 100
1,2,4-1 reniorobenzene	120-82-1	24,000	280,000	< 140	NA	NA	NA	NA	< 150	< 120	< 120	< 120	< 120	NA	NA	NA	NA	< 160	< 160
1.2-Dibromoethane	106.93.4	30	1 700	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	~ 130	NA	NA	NA	NA NA	< 48	< 40
1.2-Dichlorobenzene	95-50-1	380,000	380.000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1.2-Dichloroethane	107-06-2	500	22,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 160	< 160
1.2-Dichloropropane	78-87-5	2,700	71,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,3-Dichlorobenzene	541-73-1	Nav	Nav	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
1,4-Dichlorobenzene	106-46-7	2,800	120,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
2-Butanone	78-93-3	28,000,000	28,000,000	< 270	NA	NA	NA	NA	< 290	< 270	< 250	< 270	380	NA	NA	NA	NA	< 320	230 J
2-Hexanone	591-78-6	Nav	Nav	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
4-Methyl-2-pentanone	108-10-1	3,400,000	3,400,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Acetone	67-64-1	61,000,000	110,000,000	< 140	NA	NA	NA	NA	< 150	< 130	< 130	< 130	< 130	NA	NA	NA	NA	< 220 U	< 210 U
Benzene	71-43-2	1,200	54,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Bromochloromethane	74-97-5	Nav	Nav	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Bromodichloromethane	75-27-4	310	14,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Bromolorm	75-25-2	20,000	910,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Bromomethane	74-83-9	7,500	32,000	< 140	NA	NA	NA NA	NA	< 150	< 150 c 40	< 150 < 28	< 150	- 130	NA	NA	NA	NA	< 160 - 40	< 100 < 40
Carbon tatsashlarida	56 22 5	740,000	21,000	< 41	NA	NA	NA	NA	2 44	< 40	~ 38	< 40	~ 39	NA	NA	NA	NA	- 40	~ 49
Chlorohenzene	108-90-7	290,000	760.000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	~ 39	NA	NA	NA	NA	< 48	< 49
Chloroethane	75.00.3	2 100 000	2 100 000	< 140	NA	NA	NA	NA	< 150	< 130	< 130	< 130	130	NA	NA	NA	NA	× 160	< 160
Chloroform	67-66-3	340	15.000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Chloromethane	74-87-3	120,000	500,000	< 140	NA	NA	NA	NA	< 150	< 130	< 130	< 130	< 130	NA	NA	NA	NA	< 160	< 160
cis-1,2-Dichloroethene	156-59-2	17,000	80,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
cis-1,3-Dichloropropene	10061-01-5	Nav	Nav	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Cyclohexane	110-82-7	120,000	120,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 160	< 160
Cyclohexanone	108-94-1	5,100,000	5,100,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	NA	NA
Dibromochloromethane	124-48-1	8,300	390,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Dichlorodifluoromethane	75-71-8	94,000	400,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 160 UJ	< 160 UJ
Ethylbenzene	100-41-4	6,200	270,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Isopropylbenzene	98-82-8	270,000	270,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
m,p-Ayiene Mathyl agatata	156///-61-2	22.000.000	20 000 000	53 J	NA	NA	NA	NA	36 J	89 - 270 III	30 J	~ 80	1 J	NA	NA	NA	NA	~ 9/ 150 T	~ 98 130 I
Method tort-bated other	19-20-9	50,000	29,000,000	≤ 41	NA	NA	NA	NA	< 44	< 40	~ 250 UJ	~ 2/0 UJ	- 30	NA	NA	NA	NA	< 48	150 J
Methylcsclobexane	108-87-2	Nav	Nav	140	NA	NA	NA	NA	140	190	73	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Methylene chloride	75-09-2	58,000	3,300,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	240 J	380 J
Naphthalene	91-20-3	2,400	110.000	NA	NA	NA	NA	NA	NA	NA	NA	< 160	< 160						
o-Xylene	95-47-6	Nav	Nav	33 J	NA	NA	NA	NA	< 44	50	17 J	< 40	53	NA	NA	NA	NA	< 48	< 49
Styrene	100-42-5	870,000	870,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Tetrachloroethene	127-18-4	25,000	170,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Toluene	108-88-3	820,000	820,000	33 J	NA	NA	NA	NA	< 44	110	29 J	25 J	< 39	NA	NA	NA	NA	< 48	< 49
trans-1,2-Dichloroethene	156-60-5	75,000	320,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
trans-1,3-Dichloropropene	10061-02-6	Nav	Nav	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Trichloroethene	79-01-6	1,000	20,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Trichlorofluoromethane	75-69-4	790,000	1,200,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Vinyl chloride	75-01-4	61	18,000	< 41	NA	NA	NA	NA	< 44	< 40	< 38	< 40	< 39	NA	NA	NA	NA	< 48	< 49
Ayrenes, I otal	1330-20-7	260,000	260,000	86 J	NA	NA	NA	NA	× 1.90	140	47 J	< 120	120	NA	NA	NA	NA	~ 150	~ 150
Criteria Exceeded in Sample		I	1		1	1			1		1	1	1	1		1		1	

Notes: J - analyse reset at an estimated concentration between the MDL and Report Limit U - Doctored, the parameter was qualified an undetected during data validation U - speed data validation report, data are to be used continuely as they are estimated NA- seet analyse. Nav. - seet analyse.

8:44 PM on 8/9/2024

Vol - an examine
Res - Indicate exceedance of the WVDEP inductial soil de minimis standard, December 2022
Red - Indicates exceedance of the WVDEP inductial soil de minimis standard, December 2022
Red - Indicates exceedance of the WVDEP inductial soil de minimis standard.

Table 2-1H Subsurface Soil Analytical Data and Comparison to De Minimis Screening Values - VOCs Human Health and Ecological Risk Assessment Formor Hinton Ites House Hinton, West Virginia

	Sample Name			SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	FD-2
	Sample Location	1		SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	SS15	SS15
	Sample Depth			8.5-8.7'	14.4-14.6'	2.8-3.0'	6.3-6.4	6.6-6.8'	12.7-12.9	5.5-5.7'	9.5-9.7	2.0-7.1'	5.6-5.8'	10.2-10.5	6-8'	6-8'
	Sample Date		WVDEP	10/1//2017	10/1//2017	10/10/2017	10/10/2017	10/10/2017	10/10/2017	10/1//2017	10/1//2017	10/10/2017	10/1//2017	10/1//2017	7/14/2022	7/14/2022
	Sample Type	WVDEP Regidential Soil	De Minimie	Field Sample	Subsurface											
	Saturated/Linsaturated	De Minimis	Standard	Unsaturated	Unsaturated											
	On-Site/Off-Site	Standard (µg/kg)	(µg/kg)	Off-Site	On-Site	On-Site										
	CAS No.	Res	Ind													
Volatile Organic Compounds (µ	ıg/kg)															
1,1,1-Trichloroethane	71-55-6	640,000	640,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,1,2,2-Tetrachloroethane	79-34-5	640	28,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,1,2-Trichlorotrifluoroethane	76-13-1	910.000	910.000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,1-Dichloroethane	75-34-3	3,800	170,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,1-Dichloroethene	75-35-4	240,000	1,100,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,2,3-Trichlorobenzene	87-61-6	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 120	< 110
1,2,4-Trichlorobenzene	120-82-1	24,000	280,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 120	< 110
1,2-Dibromo-3-chloropropane	96-12-8	5.7	690	< 120	< 140	< 130	< 130	< 130	< 120	< 130	< 130	NA	< 140	< 140	< 120	< 110
1,2-Dioromocutane	106-93-4	39	380.000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1.2-Dichloroethane	107-06-2	500	22,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 120	< 110
1.2-Dichloropropane	78-87-5	2,700	71,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,3-Dichlorobenzene	541-73-1	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
1,4-Dichlorobenzene	106-46-7	2,800	120,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
2-Butanone	78-93-3	28,000,000	28,000,000	< 250	< 280	< 270	< 260	< 250	< 240	< 250	< 250	NA	< 270	< 280	< 250 R	130 J
2-Hexanone	591-78-6	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
4-Methyl-2-pentanone	108-10-1	3,400,000	3,400,000	< 3/	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 3/	< 32
Benzene	6/-64-1 71_43_2	1 200	54 000	< 120	< 41	< 40	< 130	< 38	< 120	< 38	< 38	NA	< 41	< 41	< 37	< 110
Bromochloromethane	74-97-5	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Bromodichloromethane	75-27-4	310	14,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Bromoform	75-25-2	20,000	910,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Bromomethane	74-83-9	7,300	32,000	< 120	< 140	< 130	< 130	< 130	< 120	< 130	< 130	NA	< 140	< 140	< 120	< 110
Carbon disulfide	75-15-0	740,000	740,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Carbon tetrachloride	56-23-5	700	31,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Chlorobenzene	108-90-7	290,000	760,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 3/	< 32
Chloroform	/5-00-3	2,100,000	2,100,000	< 120	< 140	< 130	< 130	< 130	< 120	< 130	< 130	NA	< 140	< 140	< 120	< 110
Chloromethane	74-87-3	120.000	500.000	< 120	< 140	< 130	< 130	< 130	< 120	< 130	< 130	NA	< 140	< 140	< 120	< 110
cis-1,2-Dichloroethene	156-59-2	17,000	80,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
cis-1,3-Dichloropropene	10061-01-5	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Cyclohexane	110-82-7	120,000	120,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 120	< 110
Cyclohexanone	108-94-1	5,100,000	5,100,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	NA	NA
Dibromochloromethane	124-48-1	8,300	390,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Dichlorodifluoromethane	75-71-8	94,000	400,000	< 3/	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 120 UJ	< 110 UJ
Isopropylbenzene	100-41-4	270.000	270,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
m n-Xylene	136777-61-2	270,000 Nav	270,000 Nav	< 75	< 83	< 80	< 78	< 76	< 72	< 76	< 76	NA	< 81	< 83	< 75	< 64
Methyl acetate	79-20-9	23,000,000	29,000,000	< 250 UJ	< 280 UJ	< 270 UJ	< 260 UJ	< 250 UJ	< 240 UJ	< 250 UJ	< 250 UJ	NA	< 270 UJ	< 280 UJ	200 J	93 J
Methyl tert-butyl ether	1634-04-4	50,000	2,200,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Methylcyclohexane	108-87-2	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Methylene chloride	75-09-2	58,000	3,300,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	230 J	150 J
Naphthalene	91-20-3	2,400	110,000	NA	< 120	< 110										
o-Aytene	95-47-6	Nav 870.000	Nav 870.000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Tetrachloroethene	100-42-5	25,000	170,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Toluene	108-88-3	820.000	820.000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
trans-1.2-Dichloroethene	156-60-5	75.000	320,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
trans-1,3-Dichloropropene	10061-02-6	Nav	Nav	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Trichloroethene	79-01-6	1,000	20,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Trichlorofluoromethane	75-69-4	790,000	1,200,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Vinyl chloride	75-01-4	61	18,000	< 37	< 41	< 40	< 39	< 38	< 36	< 38	< 38	NA	< 41	< 41	< 37	< 32
Xylenes, Total	1330-20-7	260,000	260,000	< 110	< 120	< 120	< 120	< 110	< 110	< 110	< 110	NA	< 120	< 120	< 110	< 96
Criteria Exceeded in Sample		1	L				1						-			

Notes: J - analysis present at an estimated concentration between the MDL and Report Limit U - product validation respond, data are to be used catalonshy as they are estimated R - the validation resets this qualifier to notate not to use this result R - and vanight Nor - not vanight More - index validable More

Table 2-11 Surface Soll Analytical Data and Comparison to De Minimis Screening Values - PAHs Human Health and Ecological Rink Assessment Former Hinton, Vesk Virginia Hinton, Wesk Virginia

	Sample Name			SS-01	SS-02	SS-03	SS-04 [1]	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	FD-1
	Sample Location			SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS07	SS01	SS15	SS15
	Sample Depth			0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-2'	0-2'
	Sample Date		WVDEP	10/17/2017	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Duplicate	Dunlicate	Field Sample	Duplicate											
	Surface/Subsurface	Residential Soil	De Minimis	Surface	Surface	Surface	Surface	Surface											
	Saturated/Unsaturated	De Minimis	Standard	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated											
	On-Site/Off-Site	Standard (ug/kg)	(ne/ke)	Off-Site	Off-Site	On-Site	On-Site	On-Site	On-Site	On-Site									
	CAS No.	Res	Ind																
Polycyclic Aromatic Hydrocart	bons (µg/kg)										1								
2-Methylnaphthalene	91-57-6	310,000	4,700,000	39	27 J*	50	150	53	140	27	90	43	NA	1.9 J	71 J-	38	43	NA	NA
Acenaphthene	83-32-9	4,100,000	47,000,000	22 J	8.9	11 J	420	66	170	48	180	170	NA	1.0 J	33 J-	77	13 J	< 23	51 J*
Acenaphthylene	208-96-8	4,200,000	51,000,000	590	37	510	10000	850	1400	370	720	990	NA	9.1	460 J-	350 J	550	130 J*	250 J*
Anthracene	120-12-7	23,000,000	350,000,000	210	41 J*	260	7700	530	1100	280	1100	690	NA	9.2	290 J.J.	260 J	180	260 J*	1100 J*
Benzo(a)anthracene	56-55-3	1,500	320,000	590	130 J*	640	42000 /Res	2000 /Res	3700 /Res	680	3400 /Res	2100 /Res	NA	19	1100 J-	760	730	1200 J*	3100 J*/Res
Benzo(a)pyrene	50-32-8	110	21,000	760 /Res	130 J*	800 /Res	36000 /Ind	2300 /Res	4000 /Res	700 /Res	3700 /Res	2400 /Res	NA	23	1200 J-/Res	870 /Res	890 /Res	1400 J*/Res	2100 J*/Res
Benzo(b)fluoranthene	205-99-2	1,100	210,000	1200 /Res	240 J*	1400 /Res	47000 /Res	3800 /Res	5600 /Res	1200 /Res	4900 /Res	3200 /Res	NA	51	2200 J-/Res	1500 /Res	1400 /Res	1700 J*/Res	3400 J*/Res
Benzo(g,h,i)perylene	191-24-2	1,800,000	23,000,000	580	100 J*	630	15000	1300	1900	530	1600	1400	NA	20	710 J-	530	600	710 J*	830 J*
Benzo(k)fluoranthene	207-08-9	11,000	2,100,000	410	66 J*	500	16000 /Res	920	2100	430	1400	1100	NA	16	790 J-	530	490	590 J*	830 J*
Chrysene	218-01-9	110,000	21,000,000	740	140 J*	740	39000	2000	3800	740	3200	2100	NA	28	1300 J-	850	890	1400 J*	3200 J*
Dibenzo(a,h)anthracene	53-70-3	110	21,000	140 /Res	29 J*	150 /Res	4100 /Res	370 /Res	610 /Res	110	520 /Res	320 /Res	NA	4.7	210 J,J-/Res	88	140 /Res	170 J*/Res	210 J*/Res
Fluoranthene	206-44-0	2,400,000	30,000,000	980	210 J*	880	70000	3300	6600	1200	6000	4000	NA	32	1800 J-	1600	1100	2200 J*	6200 J*
Fluorene	86-73-7	2,900,000	37,000,000	37 J	14 J*	28 J	1100	130	320	48	370	180	NA	2.1 J	92 J-	72	32 J	33 J*	430 J*
Indeno(1,2,3-cd)pyrene	193-39-5	1,100	210,000	700	120 J*	760	17000 /Res	1500 /Res	2500 /Res	650	2100 /Res	1500 /Res	NA	24	920 J-	650	720	950 J*	1100 J*
Naphthalene	91-20-3	2,400	110,000	26 J	17 J*	31 J	230	72	160	25 J*	100	75	NA	1.4 J	49 J-	50 J*	36 J	< 23	100 J*
Phenanthrene	85-01-8	23,000,000	350,000,000	330	170 J*	170	8500	1200	2700	540	3800	1800	NA	16	650 J-	860	340	860 J*	4000 J*
Pyrene	129-00-0	2,300,000	34,000,000	1100	220 J*	960	72000	3500	5900	1200	5600	3800	NA	44	2100 J-	1400	1400	1900 J*	6200 J*
Criteria Exceeded in Sample				/Res	/Res	/Res	/Res/Ind	/Res	/Res	/Res	/Res	/Res			/Res	/Res	/Res	/Res	/Res

8:44 PM on 8/9/2024

Notes: [1] Multiple dilutions of several PAHs were analyzed. The result from the lowest dilution analyzed for each PAH was used J - analysis a process at an estimated concentration between the MDL and Report Limit P - crimited values one runs equipal constraints in between the MDL and Report Limit P - crimited values one runs equipal constraints paraters were conside control limits A - set of the second se

Table 2-1J Subsurface Soli Analytical Data and Comparison to De Minimis Screening Values - PAHs Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name			SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	FD-2
	Sample Location			SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	SS15	SS15
	Sample Depth			7.0-9.3'	13.5-15.0'	1.9-3.8'	5.3-7.0'	6.0-7.0'	11.5-13.0'	4.0-6.0'	9.2-10.0'	2.0-7.1'	4.5-6.1'	9.3-11.1'	6-8'	6-8'
	Sample Date		WVDEP	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/17/2017	10/16/2017	10/17/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	WVDEP	Industrial Soil	Field Sample	Duplicate											
	Surface/Subsurface	Residential Soil	De Minimis	Subsurface	Subsurface											
	Saturated/Unsaturated	De Minimis	Standard	Unsaturated	Unsaturated											
	On-Site/Off-Site	Standard (µg/kg)	(µg/kg)	Off-Site	On-Site	On-Site										
	CAS No.	Res	Ind													
Polycyclic Aromatic Hydrocart	oons (µg/kg)															
2-Methylnaphthalene	91-57-6	310,000	4,700,000	< 3.8	< 3.9	< 3.9	0.47 J	27	< 3.8	< 3.8	< 3.9	< 3.7	< 3.8	< 3.8	NA	NA
Acenaphthene	83-32-9	4,100,000	47,000,000	< 3.8	< 3.9	< 3.9	< 3.7	16	< 3.8	0.29 J	< 3.9	< 3.7	< 3.8	< 3.8	< 4.6	< 4.6
Acenaphthylene	208-96-8	4,200,000	51,000,000	2.2 J	< 3.9	1.2 J	3.8	360	< 3.8	1.4 J	2.3 J	11	1.3 J	< 3.8	< 4.6	< 4.6
Anthracene	120-12-7	23,000,000	350,000,000	0.65 J	< 3.9	0.38 J	1.6 J	200	0.21 J	1.7 J	< 3.9	12	< 3.8	< 3.8	< 4.6	< 4.6
Benzo(a)anthracene	56-55-3	1,500	320,000	1.3 J	< 3.9	2.1 J	7.9	730	< 3.8	4.4	< 3.9	23	< 3.8	1.2 J	< 4.6	< 4.6
Benzo(a)pyrene	50-32-8	110	21,000	1.9 J	< 3.9	1.6 J	8.9	640 /Res	< 3.8	4.0	< 3.9	20	< 3.8	1.2 J	< 4.6	< 4.6
Benzo(b)fluoranthene	205-99-2	1,100	210,000	4.0	< 3.9	2.4 J	12	880	< 3.8	5.7	< 3.9	29	< 3.8	1.8 J	< 4.6	< 4.6
Benzo(g,h,i)perylene	191-24-2	1,800,000	23,000,000	< 3.8	< 3.9	< 3.9	4.9	390	< 3.8	< 3.8	< 3.9	10	< 3.8	1.1 J	< 4.6	< 4.6
Benzo(k)fluoranthene	207-08-9	11,000	2,100,000	1.5 J	< 3.9	1.0 J	5.0	290	< 3.8	2.3 J	< 3.9	9.7	< 3.8	0.88 J	< 4.6	< 4.6
Chrysene	218-01-9	110,000	21,000,000	1.5 J	< 3.9	1.3 J	8.0	680	< 3.8	4.0	< 3.9	21	< 3.8	0.84 J	< 4.6	< 4.6
Dibenzo(a,h)anthracene	53-70-3	110	21,000	< 3.8	< 3.9	< 3.9	< 3.7	96	< 3.8	< 3.8	< 3.9	3.3 J	< 3.8	0.76 J	< 4.6	< 4.6
Fluoranthene	206-44-0	2,400,000	30,000,000	< 3.8 U	< 3.9	< 3.9 U	13	1400	< 3.8 U	7.6	< 3.9 U	39	< 3.8	< 3.8 U	< 4.6	5.8
Fluorene	86-73-7	2,900,000	37,000,000	< 3.8	< 3.9	< 3.9	0.33 J	57	< 3.8	0.79 J	< 3.9	1.8 J	< 3.8	< 3.8	< 4.6	< 4.6
Indeno(1,2,3-cd)pyrene	193-39-5	1,100	210,000	0.24 J	< 3.9	< 3.9	6.5	490	< 3.8	0.64 J	< 3.9	13	< 3.8	1.4 J	< 4.6	< 4.6
Naphthalene	91-20-3	2,400	110,000	< 3.8	< 3.9	< 3.9	0.50 J	25	< 3.8	< 3.8	< 3.9	< 3.7	< 3.8	< 3.8	< 4.6	< 4.6
Phenanthrene	85-01-8	23,000,000	350,000,000	1.3 J	< 3.9	0.43 J	3.7 J	470	0.75 J	4.9	< 3.9	16	< 3.8	< 3.8	< 4.6	< 4.6
Pyrene	129-00-0	2,300,000	34,000,000	< 3.8 U	< 3.9	< 3.9 U	11	1200	< 3.8	9.2	< 3.9 U	41	< 3.8	< 3.8 U	< 4.6	6.6
Criteria Exceeded in Sample								/Res								

Notes: J - analysis in present at an estimated concentration between the MDE, and Report Limit U - Understend, the parameter was qualified as understend during data validation NA. - see malyzed Meterioritons used in comparisons: Refs. Indicates exceeding of the WVDEP realized als all durinisms standard. Docember 2022 Refs. Indicates exceeding of the WVDEP subsectial soil durinisms standard. Docember 2022 Refs. Indicates exceeding of the WVDEP realized all durinisms standard. Docember 2022

Table 2-1K Surface Soil Analytical Data and Comparison to De Minimis Screening Values - SVOCs Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Vingilan

	Sample Name			SS-01	SS-02	SS-03	SS-04	SS-05	SS-06	SS-07	SS-08	SS-09	SS-10	SS-11	SS-12	SS-13	SS-14	SS-15	FD-1
	Sample Location			SS01	SS02	SS03	SS04	SS05	SS06	SS07	SS08	SS09	SS10	SS11	SS12	SS07	SS01	SS15	SS15
	Sample Depth	WVDEP		0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-0.5'	0-2'	0-2'
	Sample Date	Residential	WVDEP	10/17/2017	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	10/16/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	Soil De	Industrial Soil	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Field Sample	Dunlicate	Dunlicate	Field Sample	Dunlicate
	Surface/Subsurface	Minimis	De Minimis	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface	Surface
	Saturated/Unsaturated	Standard	Standard	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated
	On-Site/Off-Site	(ua/ka)	(ua/ka)	Off-Site	Off-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
	CAS No	Res	Ind	On-Sac	-On-One	- On-One	on-one	On-one	- On-One	On-one	On-Site	- On-One	on-one	On-One	- On-One	Ou-One	On-One	On-one	On-One
Semicolatile Organia Compos	unde (naflia)	incs.	100																
1 L'-Binhenvl	92-52-4	51.000	210.000	< 300	20 I	48 I	< 210	260	110 T	< 180	73 I	< 380	NA	64 I	< 360	40 T	< 380	NA	NA
1.2.4.5 Tetrachlombenzene	95-94-3	17,000	150,000	< 3900 111	< 360	< 1900	< 2100	< 2100	< 2000	< 1800	< 1800	< 3900	NA	< 360	< 3600	< 1800	< 3800	NA	NA
1.4 Diavana	122 01 1	5 400	250,000	< 2000	180	- 020	< 1100	< 1000	< 000	< 020	< 020	1000	NA	- 180	< 1800	< 000	< 1000	NA	NA
2.2° Ownig(1.aklasonsonana)	108 60 1	5,100	230,000	< 2000	< 26	< 180	< 210	< 210	~ 200	< 120	< 180	< 380	NA	< 180	< 260	< 180	< 380	NA	NA
2.2 4 6 Totsophlorophonol	58 00 2	1 900 000	25,000,000	~ 390 < 700 III	~ 30	< 270	< 420	< 420	< 400	< 130	< 370	< 780	NA	~ 33	< 720	< 260	< 330	NA	NA
2.4.6 Tricklassekansl	06.06.4	(200,000	23,000,000	~ 750 03	2 20	~ 370	< 430	~ 420	~ 400	~ 370	~ 370	~ 280	NA	2 24	~ 750	~ 100	~ 110	NA	NA
2.4.C Tricklough and	99.04.2	40,000	82,000,000	~ 390	- 30	- 180	~ 210	~ 210	~ 200	~ 180	~ 180	~ 380	NA	~ 35	~ 300	~ 180	~ 380	NA	NA
2,4,0-Trentorophenoi	120.82.2	49,000	2 500 000	< 390	< 30	180	< 210	< 210	200	< 180 < 180	180	< 380	NA NA	- 35	< 360	180	< 380 < 380	NA	NA
2,4-Dichlorophenoi	120-83-2	190,000	2,300,000	\$ 390	\$ 30	180	~ 210	210	200	180	180	580	INA	< 35 	\$ 360	180	< 380 . 300	NA	INA
2,4-Dimethylphenol	105-67-9	1,300,000	16,000,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
2,4-Dinitrophenol	51-28-5	130,000	1,600,000	< 390 K	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 K	< 180	< 380	NA	NA
2,4-Dinitrotoluene	121-14-2	1,700	/4,000	~ 390	56	180	~ 210	210	200	< 180 < 180	< 180 < 180	380	NA	- 35	- 360	- 180	~ 580	NA	NA
2,6-Dinitrotoluene	606-20-2	360	15,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
2-Chloronaphthalene	91-58-7	5,000,000	50,000,000	< /8 UJ	< 1.2	< 3/	< 43	< 42	< 40	< 3/	< 3/	< /8	NA	< /.1	< /3	< 36	< /6	NA	NA
2-Chlorophenol	95-57-8	340,000	3,900,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
2-Methylphenol	95-48-7	3,200,000	41,000,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
2-Nitroaniline	88-74-4	630,000	8,000,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
2-Nitrophenol	88-75-5	Nav	Nav	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
	108-39-4/106-																		
3&4-Methylphenol	44-5	3,200,000	41,000,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
3,3'-Dichlorobenzidine	91-94-1	1,200	51,000	< 2000	< 180	< 930	< 1100	< 1000	< 990	< 920	< 920	< 1900	NA	< 180	< 1800	< 900	< 1900	NA	NA
3-Nitroaniline	99-09-2	Nav	Nav	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
4,6-Dinitro-2-methylphenol	534-52-1	Nav	Nav	< 390 R	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
4-Bromophenyl phenyl ether	101-55-3	Nav	Nav	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
4-Chloro-3-methylphenol	59-50-7	Nav	Nav	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
4-Chloroaniline	106-47-8	2,700	110,000	< 790	< 73	< 370	< 430	< 420	< 400	< 370	< 370	< 780	NA	< 72	< 730	< 360	< 770	NA	NA
4-Chlorophenyl phenyl ether	7005-72-3	Nav	Nav	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
4-Nitroaniline	100-01-6	Nav	Nav	< 2000	< 180	< 930	< 1100	< 1000	< 990	< 920	< 920	< 1900	NA	< 180	< 1800	< 900	< 1900	NA	NA
4-Nitrophenol	100-02-7	Nav	Nav	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Acetophenone	98-86-2	2,500,000	2,500,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Atrazine	1912-24-9	2,400	100,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Benzaldehyde	100-52-7	170,000	1,200,000	< 790	< 73	< 370	< 430	< 420	< 400	< 370	< 370	< 780	NA	< 72	< 730	< 360	< 770	NA	NA
Bis(2-chloroethoxy)methane	111-91-1	Nav	Nav	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Bis(2-chloroethyl)ether	111-44-4	240	11,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Bis(2-ethylhexyl)phthalate	117-81-7	39,000	1,600,000	< 390	< 36	160 J	< 210	< 210	< 200	480	< 180	< 380	NA	35 J	420 J*	620	270 J	NA	NA
Butyl benzyl phthalate	85-68-7	290,000	12,000,000	< 390	< 36	360	< 210	< 210	< 200	240 J*	< 180	< 380	NA	49	500 J*	< 180	< 380	NA	NA
Caprolactam	105-60-2	31,000,000	400,000,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Carbazole	86-74-8	Nav	Nav	< 390 UJ	< 36	< 180	440	320	220	99 J	240	410	NA	< 35	190 J	190 J*	< 380	NA	NA
Dibenzofuran	132-64-9	78,000	1,200,000	< 390 UJ	30 J	52 J	720	590	290	< 180	240	100 J	NA	< 35	< 360	93 J	< 380	NA	NA
Diethyl phthalate	84-66-2	51,000,000	660,000,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Dimethyl phthalate	131-11-3	Nav	Nav	< 390 R	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 R	< 180	< 380	NA	NA
Di-n-butyl phthalate	84-74-2	6,300,000	82,000,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Di-n-octyl phthalate	117-84-0	Nav	Nav	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Hexachlorobenzene	118-74-1	220	10,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Hexachlorobutadiene	87-68-3	1,300	17,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Hexachlorocyclopentadiene	77-47-4	1,900	8,000	< 390 R	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 R	< 180	< 380	NA	NA
Hexachloroethane	67-72-1	2,000	86,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Isophorone	78-59-1	570,000	24,000,000	< 2000	< 180	< 930	< 1100	< 1000	< 990	< 920	< 920	< 1900	NA	< 180	< 1800	< 900	< 1900	NA	NA
Nitrobenzene	98-95-3	5,500	240,000	< 2000	< 180	< 930	< 1100	< 1000	< 990	< 920	< 920	< 1900	NA	< 180	< 1800	< 900	< 1900	NA	NA
N-Nitrosodi-n-propylamine	621-64-7	78	3,300	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
N-Nitrosodiphenylamine	86-30-6	110,000	7,200,000	< 390 UJ	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360 UJ	< 180	< 380	NA	NA
Pentachlorophenol	87-86-5	1,000	40,000	< 390	< 36	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Phenol	108-95-2	19,000,000	250,000,000	< 390	47	< 180	< 210	< 210	< 200	< 180	< 180	< 380	NA	< 35	< 360	< 180	< 380	NA	NA
Criteria Exceeded in Sample				1		1	L			L			1						

Lefference under the sense of t

Table 2-1L Subsurface Soil Analytical Data and Comparison to De Minimis Screening Volues - SVOCs Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name			SB-01	SB-03	SB-04	SB-05	SB-06	SB-07	SB-08	SB-09	SB-10	SB-12	SB-13	SB-15	FD-2
	Sample Location			SS01A	SS03	SS04A	SS05	SS06	SS07	SS08	SS09C	SS10C	SS12	SS13	SS15	SS15
	Sample Depth	WVDEP		7.0-9.3'	13.5-15.0'	1.9-3.8'	5.3-7.0'	6.0-7.0'	11.5-13.0'	4.0-6.0'	9.2-10.0'	2.0-7.1'	4.5-6.1	9.3-11.1'	6-8'	6-8'
	Sample Date	Residential	WVDEP	10/17/2017	10/17/2017	10/16/2017	10/16/2017	10/16/2017	10/16/2017	10/17/2017	10/17/2017	10/16/2017	10/17/2017	10/17/2017	7/14/2022	7/14/2022
	Sample Type	Soil De	Industrial Soil	Field Sample	Duplicate											
	Surface/Subsurface	Minimis	De Minimis	Subsurface	Subsurface											
	Saturated/Unsaturated	Standard	Standard	Unsaturated	Unsaturated											
	On-Site/Off-Site	(ug/kg)	(ug/kg)	Off-Site	On-Site	On-Site										
	CAS No.	Res	Ind													
Semivolatile Organic Com	nounds (ug/kg)															
1.1'-Biphenyl	92-52-4	51.000	210.000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
1.2.4.5-Tetrachlorobenzene	95-94-3	17,000	150,000	< 380	< 390	< 380	< 370	< 1900	< 380	< 360	< 380	< 380	< 380	< 390	NA	NA
1 4-Diovane	123-91-1	5 400	250,000	< 190	< 200	< 190	< 180	< 950	< 190	< 180	< 190	< 190	< 190	< 190	NA	NA
2 2' Orubis(1 chloropropage	108 60 1	5,100	230,000	28	200	27	< 36	190	28	< 36	28	28	2 37	28	NA	NA
2.2.4.6 Tatrachlorophonal	58 90 2	1 900 000	25 000 000	~ 77	< 79	< 76	< 74	< 380	~ 76	< 73	< 77	< 76	2 76 III	78 11	NA	NA
2.4.5 Trichlorophenol	95 95 4	6 300 000	82,000,000	2 28	< 30	< 37	< 36	< 190	2 28	2 36	2 38	< 38	< 37 III	2 28 UI	NA	NA
2,4,5-Trichlorophenol	99.06.2	40,000	82,000,000	- 20	< 30	< 37	~ 36	< 100	- 20	~ 36	- 29	~ 38	< 37 UJ	< 30 UJ	NA	NA
2,4,0-Themorophenor	120.02.2	49,000	320,000	- 30	- 39	- 37	- 30	190	- 30	- 30	- 30	- 30	> 37 UJ	> 30 UJ	NA NA	NA
2,4-Dieniorophenoi	120-83-2	1 200,000	2,500,000	< 38	< 39	< 3/	< 30	< 190	< 38	< 30	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
2,4-Dimensiphenor	103-07-9	1,300,000	10,000,000	- 30	- 39	- 37	- 30	190	- 30	- 30	- 30	- 30	> 37 UJ	> 30 UJ	NA NA	NA NA
2,4-Dinitrophenoi	51-28-5	130,000	1,600,000	- 38	- 39	- 3/	- 30	190	38	30	- 38	- 38	3/ UJ	- 38 UJ	NA	NA
2,4-Dinitrotofuene	121-14-2	1,700	/4,000	< 38	\$ 39	< 3/	< 36	< 190	\$ 38	\$ 36	< 38	< 38	< 37	< 38	NA	NA
2,0-Dinitrotoluene	606-20-2	360	15,000	\$ 38	\$ 39	< 31	< 30	< 190 	\$ 58	\$ 50	< 38	< 38	\$ 5/	5 38	NA	NA
2-Cnioronaphthalene	91-58-7	5,000,000	50,000,000	< 7.0	< 7.9	< 7.6	< 7.4	< 58	\$ 7.6	< 7.5	< 7.7	< 7.6	< 7.5	5 7.7	NA	NA
2-Chiorophenol	95-57-8	340,000	3,900,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
2-Methylphenol	95-48-7	3,200,000	41,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
2-Nitroaniline	88-74-4	630,000	8,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
2-Nitrophenol	88-75-5	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
	108-39-4/106-															
3&4-Methylphenol [1]	44-5	3,200,000	41,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
3,3'-Dichlorobenzidine	91-94-1	1,200	51,000	< 190	< 200	< 190	< 180	< 950	< 190	< 180	< 190	< 190	< 190	< 190	NA	NA
3-Nitroaniline	99-09-2	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
4,6-Dinitro-2-methylphenol	534-52-1	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
4-Bromophenyl phenyl ether	101-55-3	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
4-Chloro-3-methylphenol	59-50-7	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
4-Chloroaniline	106-47-8	2,700	110,000	< 77	< 79	< 76	< 74	< 380	< 76	< 73	< 77	< 76	< 76	< 78	NA	NA
4-Chlorophenyl phenyl ether	7005-72-3	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
4-Nitroaniline	100-01-6	Nav	Nav	< 190	< 200	< 190	< 180	< 950	< 190	< 180	< 190	< 190	< 190	< 190	NA	NA
4-Nitrophenol	100-02-7	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 UJ	< 38 UJ	NA	NA
Acetophenone	98-86-2	2,500,000	2,500,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Atrazine	1912-24-9	2,400	100,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Benzaldehyde	100-52-7	170,000	1,200,000	< 77	< 79	< 76	< 74	< 380	< 76	< 73	< 77	< 76	< 76	< 78	NA	NA
Bis(2-chloroethoxy)methane	111-91-1	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Bis(2-chloroethyl)ether	111-44-4	240	11,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Bis(2-ethylhexyl)phthalate	117-81-7	39,000	1,600,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Butyl benzyl phthalate	85-68-7	290,000	12,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Caprolactam	105-60-2	31,000,000	400,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Carbazole	86-74-8	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Dibenzofuran	132-64-9	78,000	1,200,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Diethyl phthalate	84-66-2	51,000,000	660,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Dimethyl phthalate	131-11-3	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Di-n-butyl phthalate	84-74-2	6,300,000	82,000,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Di-n-octyl phthalate	117-84-0	Nav	Nav	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Hexachlorobenzene	118-74-1	220	10,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Hexachlorobutadiene	87-68-3	1,300	17,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Hexachlorocyclopentadiene	77-47-4	1,900	8,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Hexachloroethane	67-72-1	2.000	86,000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Isophorone	78-59-1	570.000	24,000,000	< 190	< 200	< 190	< 180	< 950	< 190	< 180	< 190	< 190	< 190	< 190	NA	NA
Nitrobenzene	98-95-3	5,500	240,000	< 190	< 200	< 190	< 180	< 950	< 190	< 180	< 190	< 190	< 190	< 190	NA	NA
N-Nitrosodi-n-propylamine	621-64-7	78	3,300	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
N-Nitrosodinhenvlamine	86-30-6	110.000	7.200.000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37	< 38	NA	NA
Pentachlorophenol	87-86-5	1.000	40.000	< 38	< 39	< 37	< 36	< 190	< 38	< 36	< 38	< 38	< 37 11	< 38 11	NA	NA
Phenol	108-95-2	19.000.000	250,000,000	< 38	< 39	< 37	< 36	< 190	51	< 36	< 38	< 38	< 37 III	< 38 U	NA	NA
Criteria Exceeded in Sample	100 75 2			50		57	50				50	50		50 00		
, and inconcern m Dample			1	1	1	1	1	1	1	1	1	1	1	1	1	1

Notes: NA - not analyzed Nav - not available UJ - per data validation report, data are to be used cautiously as they are estimated

(3) - per data valuation report, and are to be losed cautously as may are estimated [1] There is no W/DEP residential and industrial soil de minimis standard for 3&4-methylphenol (i.e. m- and p-cresol). However, for purposes of screening, the lower of the m-cresol and p-cresol soil de minimis standards was used, which is conservative.

Abbreviations used in comparisons: Abbreviations used in comparisons: //Res - Indicates exceedance of the WVDEP industrial soil de minimis standard, December 2022 /Ind - Indicates exceedance of the WVDEP industrial soil de minimis standard, December 2022

Table 2-2A SPLP Data (VOCs) and Comparison to Direct Contact Screening Values Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name			SS-15 0-2'			SB-15 6-8'			SS-16 2-4'			SB-16 8-10'	' I		SS-17 2-4'		:	SB-17 4-5'			FD-1 0-2'			FD-2 6-8'	
	Sample Location	WVDEP		SS15			SS15			SS16			SS16			SS17			SS17			SS15			SS15	
	Date Collected	Groundwater	Ι.	07/14/22			07/14/22			07/14/22			07/14/22			07/14/22			07/14/22			07/14/22			07/14/22	
	Sample Type	De Minimis Standard (ug/L)		Investigation On Site		1	nvestigation On Site		1	Investigation	n		Investigation	n		Investigation	1	n	On Site	n		Duplicate On Site			On Site	
Chemical	CAS No.	GW		Ou-site			Oil-Site			On-Suc			Oil-Site			On-Site			On-Site			On-Site			Oil-Site	
Volatile Organic Compounds (ug/L)														_												
1,1,1-Trichloroethane	71-55-6	200	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,1,2,2-Tetrachloroethane	79-34-5	0.076	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,1,2-Trichloroethane	79-00-5	5	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,1,2-Trichlorotrifluoroethane	76-13-1	10000	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,1-Dichloroethane	75-34-3	2.8	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,1-Dichloroethene	75-35-4	7	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2,3-Trichlorobenzene	87-61-6	Nav	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2,4-Trichlorobenzene	120-82-1	70	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2-Dibromo-3-chloropropane (DBCP)	96-12-8	0.2	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2-Dibromoethane	106-93-4	0.05	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2-Dichlorobenzene	95-50-1	600	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2-Dichloroethane	107-06-2	5	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,2-Dichloropropane	78-87-5	5	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,3-Dichlorobenzene	541-73-1	Nav	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
1,4-Dichlorobenzene	106-46-7	75	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
2-Butanone (MEK)	78-93-3	5600	<	100		<	100		<	100		<	100		<	100		<	100		<	100		<	100	
2-Hexanone	591-78-6	Nav	<	100		<	100		<	100		1 <	100		1 1	100		<	100		<	100		<	100	
4-Methyl-2-pentanone	108-10-1	1200	< .	20		<	20		<	20	UJ	1	20	UJ	15	20	0,0.	< .	20	UJ	<	20	UJ	1	20	UJ
Acetone	67-64-1	14000	< .	200		<	200 U,	,U.	<	200	UJ	1	200	UJ	1	280	UJ	< .	200	UJ	<	200	UJ	1	200	UJ
Benzene	71-43-2	5	< .	20		<	20		<	20		1	20		15	20		< .	20		<	20		1	20	
Bromochloromethane	74-97-5	Nav	5	20		5	20		5	20		15	20		15	20		5	20		5	20		5	20	
Bromodichloromethane	/5-2/-4	80	10	20		2	20		2	20		C.	20		10	20		÷.	20		÷.	20		1.5	20	
Bromotorm	/5-25-2	80	10	20		2	20		2	20		C.	20		10	20		÷.	20		÷.	20		1.5	20	
Bromomethane Carbon disulfida	74-83-9	7.5	12	20		2	20		2	20	UJ	2	20	UJ	12	20	UJ	2	20	UJ	2	20	UJ	2	20	UJ
Carbon disuinde	/3-13-0	810	12	20		2	20		2	20	UJ	12	20	UJ	12	20	UJ	2	20	UJ	2	20	UJ	12	20	UJ
Chlorohongana	108.00.7	100	12	20		2	20		2	20		2	20		12	20		2	20		2	20		2	20	
Chloroothana	75.00.2	21000	12	20		2	20		2	20		2	20		12	20		2	20		2	20		2	20	
Chloroform	67.66.3	21000	2	20		2	20		2	20		2	20		12	20		2	20		2	20		2	20	
Chloromethana	74.87.3	190	1	20		2	20		2	20		Ę.	20		12	20		2	20		2	20		2	20	
cie_1.2.Dichloroethene	156.59.2	70	1	20		2	20		2	20		Ę.	20		12	20		2	20		2	20		2	20	
cis-1 3-Dichloropropene	10061-01-5	Nav	<	20		<	20		<	20		2	20		12	20		<	20		<	20		<	20	
Cyclohexapone	108-94-1	1400	<	200		<	200		<	200		<	200		<	200		<	200		<	200		<	200	
Dibromochloromethane	124-48-1	80	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Dichlorodifluoromethane	75-71-8	200	<	20		<	20		<	20	IJ	<	20	U.I	<	20	UJ	<	20	UJ	<	20	UJ.	<	20	U.I
Ethylbenzene	100-41-4	700	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Isopropylbenzene	98-82-8	450	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
m.p-Xylene	136777-61-2	Nav		18	J	<	40		<	40		<	40		<	40		<	40		<	40		<	40	
Methyl acetate	79-20-9	5300	<	40		<	40		<	40		<	40		<	40		<	40		<	40		<	40	
Methyl tert-butyl ether (MTBE)	1634-04-4	14	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Methylcyclohexane	108-87-2	Nav	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Methylene chloride	75-09-2	5	<	100		<	100		<	100		<	100		<	100		<	100		<	100		<	100	
Naphthalene	91-20-3	0.12	<	100		<	100		<	100		<	100		<	100		<	100		<	100		<	100	
o-Xylene	95-47-6	Nav		9.0	J	<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Styrene	100-42-5	100	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Tetrachloroethene	127-18-4	5	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Toluene	108-88-3	1000		16	J	<	20		<	20		<	20		<	20		<	20		<	20		<	20	
trans-1,2-Dichloroethene	156-60-5	100	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
trans-1,3-Dichloropropene	10061-02-6	Nav	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Trichloroethene	79-01-6	5	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Trichlorofluoromethane	75-69-4	1100	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Vinyl chloride	75-01-4	2	<	20		<	20		<	20		<	20		<	20		<	20		<	20		<	20	
Xylenes, Total ^[1]	1330-20-7	10000		27	J	<	60		<	60		<	60		<	60		<	60		<	60		<	60	
Criteria Exceeded in Sample																										

Notes:

Notes: Nav - not available J - analyte is present at an estimated concentration between the MDL and Report Limit U - Undetected; the parameter was qualified as undetected during data validation UJ - per data validation report, data are to be cautiously as they are estimated data with some quality control issues. Abbreviations used in comparisons: /(W - Indicase seccedance of the WDEP eroundwater de minimis

/GW - Indicates exceedance of the WVDEP groundwater de minimis standard (December 2022)

[1] Total xylenes concentrations for the analytical data were calculated by adding the laboratory reported results for the individual isomers.

Table 2-2B SPLP Data (PAHs) and Comparison to Direct Contact Screening Values Human Health and Ecological Risk Assessment Former Hinton ice House Hinton, West Virginia

	Sample Name		SS-15 0-2		:	SB-15 6-8'		SS-16 2-4'		5	SB-16 8-10'		SS-17 2-4		s	B-17 4-5'	'		FD-1 0-2'		FD-2 6-8'
	Sample Location	WVDEP	SS15			SS15		SS16			SS16		SS17			SS17			SS15		SS15
	Date Collected	Groundwater	07/14/22			07/14/22		07/14/22			07/14/22		07/14/22			07/14/22			07/14/22		07/14/22
	Sample Type	De Minimis	Investigation	on	Ь	ivestigation	I	nvestigatio	n	I	nvestigation		nvestigatio	on	In	vestigatio	on		Duplicate		Duplicate
	On-Site/Off-Site	Standard (µg/L)	On-Site			On-Site		On-Site			On-Site		On-Site			On-Site			On-Site		On-Site
Chemical	CAS No.	GW																			
Polynuclear Aromatic Hydrocarbons (PAI	Hs) (µg/L)																				
1-Methylnaphthalene	90-12-0	1.1	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
2-Chloronaphthalene	91-58-7	330	NA			NA	<	0.34		<	0.68	<	0.34		<	0.34			NA		NA
2-Methylnaphthalene	91-57-6	36	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Acenaphthene	83-32-9	240	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Acenaphthylene	208-96-8	240	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Anthracene	120-12-7	1800	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Benzo(a)anthracene	56-55-3	0.03	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Benzo(a)pyrene	50-32-8	0.2	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Benzo(b)fluoranthene	205-99-2	0.25	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Benzo(g,h,i)perylene	191-24-2	600	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Benzo(k)fluoranthene	207-08-9	2.5	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Chrysene	218-01-9	25	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Dibenzo(a,h)anthracene	53-70-3	0.025	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Fluoranthene	206-44-0	800	< 0.68		<	0.68	<	0.34		<	0.68		0.084	J	<	0.34		<	0.34	<	0.34
Fluorene	86-73-7	150	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Indeno(1,2,3-cd)pyrene	193-39-5	0.25	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Naphthalene	91-20-3	0.12	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Phenanthrene	85-01-8	1700	< 0.68		<	0.68		0.080	J	<	0.68		0.29	J		0.16	J	<	0.34	<	0.34
Pyrene	129-00-0	79	< 0.68		<	0.68	<	0.34		<	0.68	<	0.34		<	0.34		<	0.34	<	0.34
Criteria Exceeded in Sample																					

Notes:

NA - not analyzed

J - analyte is present at an estimated concentration between the MDL and Report Limit Abbreviations used in comparisons:

/GW - Indicates exceedance of the WVDEP groundwater de minimis standard (December 2022)

Table 2-2C SPLP Data (Metals) and Comparison to Direct Contact Screening Values Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name	WVDEP		SS-15 0-2'			SB-15 6-8'		SS-16 2-4'			SB-16 8-10'		SS-17 2-4'		SB-17 4-5'			FD-1 0-2'		FD-2 6-8'	
	Sample Location	Groundwater		SS15			SS15		SS16			SS16		SS17		SS17			SS15		SS15	
	Date Collected	De Minimis		07/14/22			07/14/22		07/14/22			07/14/22		07/14/22		07/14/22			07/14/22		07/14/22	
	Sample Type	Standard		Investigation	n	1	Investigation		Investigation	n	1	nvestigation	1	nvestigation	1	Investigation			Duplicate		Duplicate	
	On-Site/Off-Site	(mg/L)		On-Site			On-Site		On-Site			On-Site		On-Site		On-Site			On-Site		On-Site	
Chemical	CAS No.	GW																				
Metals (mg/L)																						
Arsenic	7440-38-2	0.01	<	0.0050		<	0.0050	<	0.0050		<	0.0050	<	0.0050	<	0.0050		<	0.0050	<	0.0050	
Barium	7440-39-3	2		0.031		<	0.0050		0.0059		<	0.0050	<	0.0050	<	0.0050			0.036		0.0043	J
Cadmium	7440-43-9	0.005	<	0.010		<	0.010	<	0.010		<	0.010	<	0.010	<	0.010		<	0.010	<	0.010	
Chromium	7440-47-3	22 [1]		0.0041	J	<	0.0050		0.00098	J	<	0.0050	<	0.0050	<	0.0050		<	0.0050	<	0.0050	
Lead	7439-92-1	0.015	<	0.0050		<	0.0050		0.0014	J	<	0.0050	<	0.0050	<	0.0050		<	0.0050		0.0019	J
Selenium	7782-49-2	0.05	<	0.010	U	<	0.010	<	0.010	U	<	0.010	<	0.010	<	0.010	U	<	0.010	<	0.010	
Silver	7440-22-4	0.094	<	0.0050		<	0.0050	<	0.0050		<	0.0050	<	0.0050	<	0.0050		<	0.0050	<	0.0050	
Mercury	7439-97-6	0.002	<	0.00020		<	0.00020	<	0.00020		<	0.00020	<	0.00020	<	0.00020		<	0.00020	<	0.00020	
Criteria Exceeded in Sample																						

Notes: NA - not analyzed Nav - not available

J - analyte is present at an estimated concentration between the MDL and Report Limit

U- Undetected; the parameter was qualified as undetected during data validation

Abbreviations used in comparisons:

/GW - Indicates exceedance of the WVDEP groundwater de minimis standard (December 2022)

[1] Trivalent chromium de minimis standards used to screen total

chromium analytical results as no source of hexavalent chromium was

present.

Table 2-2D SPLP Data (Herbicides) and Comparison to Direct Contact Screening Values Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Sample Name		SS-15 0-2'	SB-15 6-8'	SS-16 2-4'	SB-16 8-10'	SS-17 2-4'	SB-17 4-5'	FD-1 0-2'	FD-2 6-8'
	Sample Location	WVDEP	SS15	SS15	SS16	SS16	SS17	SS17	SS15	SS15
	Date Collected	Groundwater	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22
	Sample Type	De Minimis	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Duplicate	Duplicate
	On-Site/Off-Site	Standard (µg/L)	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
Chemical	CAS No.	GW								
Herbicides (µg/L)										
2,4-Dichlorophenoxyacetic acid (2,4-D)	94-75-7	70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-(2,4-Dichlorophenoxy)butyric acid (2,4-DB)	94-82-6	450	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dalapon	75-99-0	200	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dicamba	1918-00-9	570	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dichloroprop	120-36-5	Nav	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Dinoseb	88-85-7	7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	94-74-6	7.5	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP)	7085-19-0	Nav	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100
Pentachlorophenol	87-86-5	1	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	93-76-5	160	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
2-(2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP)	93-72-1	50	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Criteria Exceeded in Sample										

Notes:

Nav - not available

J - analyte is present at an estimated concentration between the MDL and Report Limit UJ - per data validation report, data are to be cautiously as they are estimated data with

some quality control issues.

1 -The QC sample type MS for method SW846 8151A was outside the control limits for the analyte Pentachlorophenol. The % Recovery was reported as 57.3 and the control limits

were 63 to 109.

2 -The QC sample type MSD for method SW846 8151A was outside the control limits for the analyte Pentachlorophenol. The % Recovery was reported as 57.6 and the control limits

were 63 to 109.

Abbreviations used in comparisons:

/GW - Indicates exceedance of the WVDEP groundwater de minimis standard (December 2022)

(2022

Table 2-2E SPLP Data (PCBs) and Comparison to Direct Contact Screening Values Human Health and Ecological Risk Assessment Former Hinton (Le House Hinton, West Virginia

	Sample Name		SS-15 0-2'	SB-15 6-8'	SS-16 2-4'	SB-16 8-10'	SS-17 2-4'	SB-17 4-5'	FD-1 0-2'	FD-2 6-8'
	Sample Location	WVDEP	SS15	SS15	SS16	SS16	SS17	SS17	SS15	SS15
	Date Collected	Groundwater	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22	07/14/22
	Sample Type	De Minimis	Investigation	Investigation	Investigation	Investigation	Investigation	Investigation	Duplicate	Duplicate
	On-Site/Off-Site	Standard (µg/L)	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site	On-Site
Chemical	CAS No.	GW								
Polychlorinated Biphenyls (ug/L)										
Aroclor-1016	12674-11-2	0.22	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1221	11104-28-2	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1232	11141-16-5	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1242	53469-21-9	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1248	12672-29-6	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1254	11097-69-1	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Aroclor-1260	11096-82-5	0.0079	< 0.80	< 0.80	< 0.40	< 0.80	< 0.40	< 0.40	< 0.40	< 0.40
Criteria Exceeded in Sample										

Notes: Abbreviations used in comparisons:

/GW - Indicates exceedance of the WVDEP groundwater de minimis standard (December 2022)

				A	nalyt	ical	Para	met	ers	Sample	
Sample Name	Sampling Depth (ft bgs)	Sample Date(s)	On-Site vs. Off-Site	vocs	SVOCS	PAHs	Metals	PCBs	Herbicides	Retained for Risk Assessment? (Yes or No)	Comments / Rationale
Surface Soil											
SS-01	0-0.5	10/17/17	Off-Site	X	X	X	X	X	X	Yes	
SS-14	0-0.5	10/17/17	On-Site		Х	X	Х	Х	Х	Yes	duplicate of SS-01
SS-02	0-0.5	10/17/17	Off-Site		Х	X	Х	Х	Х	Yes	
SS-03	0-0.5	10/17/17	On-Site		Х	X	Х	Х	Х	Yes	
SS-04	0-0.5	10/16/17	On-Site		Х	Х	Х	Х	Х	Yes	
SS-05	0-0.5	10/16/17	On-Site		Х	Х	Х	Х	Х	Yes	
SS-06	0-0.5	10/16/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SS-07	0-0.5	10/16/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SS-13	0-0.5	10/16/17	On-Site		Х	X	Х	Х	Х	Yes	duplicate of SS-07
SS-08	0-0.5	10/16/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SS-09	0-0.5	10/16/17	On-Site	Х	Х	Х	Х	Х	Х	Yes	
SS-10	0-0.5	10/16/17	On-Site	Х					Х	Yes	
SS-11	0-0.5	10/16/17	On-Site		Х	Х	Х	Х	Х	Yes	
SS-12	0-0.5	10/17/17	On-Site		Х	Х	Х	Х	Х	Yes	
SS-15	0-2	7/14/22	On-Site	Х		X	Х	Х	Х	Yes	
FD-1	0-2	7/14/22	On-Site	Х		X	Х	Х	Х	Yes	duplicate of SS-15
Unsaturated Subsurface Soi	il										
SB-01	7.0-9.3	10/17/17	Off-Site	X	X	X	X	X	X	Yes	
SB-03	13.5-15.0	10/17/17	On-Site	Х	Х	X	X	Х	X	Yes	
SB-04	1.9-3.8	10/16/17	On-Site	Х	Х	X	X	Х	X	Yes	
SB-05	5.3-7.0	10/16/17	Off-Site	Х	Х	X	X	Х	Х	Yes	
SB-06	6.0-7.0	10/16/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SB-07	11.5-13.0	10/16/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SB-08	4.0-6.0	10/17/17	On-Site	Х	Х	X	Х	Х	Х	Yes	
SB-09	9.2-10.0	10/17/17	On-Site	Х	Х	X	X	Х	Х	Yes	
SB-10	2.0-7.1	10/16/17	On-Site		Х	X	X	Х	Х	Yes	
SB-12	4.5-6.1	10/17/17	On-Site	Х	Х	Х	Х	Х	Х	Yes	
SB-13	9.3-11.1	10/17/17	On-Site	Х	Х	Х	Х	Х	Х	Yes	
SB-15	6-8	7/14/22	On-Site	Х		X	Х	Х	Х	Yes	
FD-2	6-8	7/14/22	On-Site	Х		Х	Х	Х	Х	Yes	duplicate of SB-15
Synthetic Precipitation Lead	hing Procedu	e (SPLP)	•								
SS-15 0-2'	0-2	7/14/22	On-Site	X		X	X	X	X	Yes	
SB-15 6-8'	6-8	7/14/22	On-Site	X		X	X	X	X	Yes	
SS-16 2-4'	2-4	7/14/22	On-Site	X		X	X	X	X	Yes	
SB-16 8-10'	8-10	7/14/22	On-Site	X		X	X	X	X	Yes	
SS-17 2-4'	2-4	7/14/22	On-Site	X		X	X	X	X	Yes	
SB-17 4-5'	4-5	7/14/22	On-Site	X		X	X	X	X	Yes	
FD-1 0-2'	0-2	7/14/22	On-Site	X		X	X	X	X	Yes	duplicate of SS-15 0-2'
FD-2 6-8'	6-8	7/14/22	On-Site	Х		Х	X	Х	Х	Yes	duplicate of SB-15 6-8'

Notes:

ft bgs - feet below ground surface SVOCs

SVOCs - semi-volatile organic compounds

"---" - not applicable VOCs - volatile organic compounds PAHs - polycyclic aromatic hydrocarbons

PCBs - polychlorinated biphenyls

Violation of the second	Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (µg/Kg)	Maximum Reporting Limit (µg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	<u>WV Natural</u> Background Values	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Conta Residentia Contaminan Concern (CC
11.1758/000000000000000000000000000000000000		•	•	•		•		VOCs		•			•
11.22-10 11.22-10 11.22-10 11.20	1 1 1-Trichloroethane	0/7	38	10				640.000	640 000	Nav	No	No	No
1.12-inducedman 0.7 30 49 100 1200 9800 Nak No No <thno< th=""> No <thno< th=""> No<!--</td--><td>1,1,1-Inchloroethane</td><td>0/7</td><td>38</td><td>49</td><td></td><td></td><td></td><td>640</td><td>28,000</td><td>Nav</td><td>No</td><td>No</td><td>No</td></thno<></thno<>	1,1,1-Inchloroethane	0/7	38	49				640	28,000	Nav	No	No	No
1,2 Productorelinan 97 38 49 NO NO 910,000 Big 200	1 1 2-Trichloroethane	0/7	38	49	ND	ND		1 200	6 800	Nav	No	No	No
11-Deinocentaria 0.7 32 93	1.1.2-Trichlorotrifluoroethane	0/7	38	49	ND	ND		910.000	910.000	Nav	No	No	No
1.100000000000000000000000000000000000	1.1-Dichloroethane	0/7	38	49	ND	ND		3.800	170.000	Nav	No	No	No
13.3.Ter 107 38 100 N0 N0 Nov Nov Nov Nov Nov Nov 12.3.Ter 00 ⁻¹ 10 ⁰ 10 ⁰ NO NO NO - 6.7 00 ⁰ Dir NO NO 12.3.Ter 00 ⁻¹ 38 49 NO NO - 6.7 00 Dir NO NO 12.5.Ter 00 ⁻¹ 38 49 NO NO - 39 1,700 NO NO NO 12.5.Debrootherse 07 38 49 NO NO - 300 70.00 No	1.1-Dichloroethene	0/7	38	49	ND	ND		240,000	1,100,000	Nav	No	No	No
12.4.Tringences 17 38 160 NO NO 24.000 24.000 No No No No 1.2.Dimons-blomogens (BCP) 07 38 40 NO NO 5.7 680 MS Vis No No 1.2.Dimons-blomogens (BCP) 07 38 40 NO NO 380.000 380.000 No	1,2,3-Trichlorobenzene	0/7	38	160	ND	ND		Nav	Nav	Nav	No	No	No
12-Demons-belongspane (DEP) 07 15.0 15.0 ND ND - 15.0 15.0 ND ND 1.2.0brondshare 07 3.0 4.0 ND - 30.00 30.00 ND	1,2,4-Trichlorobenzene	0/7	38	160	ND	ND		24,000	280,000	Nav	No	No	No
1.4 Domonobane P07 R8 49 ND ND P10 P10 ND P10 P	1,2-Dibromo-3-chloropropane (DBCP)	0/7	130	160	ND	ND		5.7	690	<u>Nav</u>	Yes	No	No
12-Delchoroshaream 0/7 38 49 ND ND 580.000 380.000 ND	1,2-Dibromoethane	0/7	38	49	ND	ND		39	1,700	<u>Nav</u>	Yes	No	No
12-Delanoperime 007 38 490 ND ND 200 Top No No No 13-Delanopering 07 38 49 ND ND 100 71.00 Ng/ No No <td>1,2-Dichlorobenzene</td> <td>0/7</td> <td>38</td> <td>49</td> <td>ND</td> <td>ND</td> <td></td> <td>380,000</td> <td>380,000</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	1,2-Dichlorobenzene	0/7	38	49	ND	ND		380,000	380,000	<u>Nav</u>	No	No	No
12-Detroburgengene 07 38 49 ND ND	1,2-Dichloroethane	0/7	38	160	ND	ND		500	22,000	Nav	No	No	No
13-Decknobargene O/7 38 49 ND ND Nav <	1,2-Dichloropropane	0/7	38	49	ND	ND		2,700	71,000	Nav	No	No	No
14-Delinorbanzene 0/7 38 49 NO NO 2.800 12.0000 Nage No	1,3-Dichlorobenzene	0/7	38	49	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
24butanone 27 280 290 230 J 380 SS-10 (P-Q,S) 28 00.000 Nag Nag<	1,4-Dichlorobenzene	0/7	38	49	ND	ND		2,800	120,000	<u>Nav</u>	No	No	No
2+heranne 0/7 38 49 ND ND Nav Nav No No No Adethy2-gentome 0/7 13 4/0 ND ND 61.00.00 1126.00.00 Nav No	2-Butanone	2/7	250	290	230 J	380	SS-10 (0-0.5')	28,000,000	28,000,000	<u>Nav</u>	No	No	No
etadeting 0/7 88 49 ND ND 3.400.000 3.400.000 Nev No No No Banzane 0/7 130 2.20 ND ND 11.000.000 Nav No No <td< td=""><td>2-Hexanone</td><td>0/7</td><td>38</td><td>49</td><td>ND</td><td>ND</td><td></td><td>Nav</td><td>Nav</td><td><u>Nav</u></td><td>No</td><td>No</td><td>No</td></td<>	2-Hexanone	0/7	38	49	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Acetone 07 130 220 ND ND 61,000,00 16,000,00 Nag No No No Brunzen 077 38 49 ND ND 1,200 54,000 Nag No No No No No No No No Bromodchirormethane 077 38 49 ND ND Nag Baro Nag No No </td <td>4-Methyl-2-pentanone</td> <td>0/7</td> <td>38</td> <td>49</td> <td>ND</td> <td>ND</td> <td></td> <td>3,400,000</td> <td>3,400,000</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	4-Methyl-2-pentanone	0/7	38	49	ND	ND		3,400,000	3,400,000	<u>Nav</u>	No	No	No
Banzenio Or 38 49 ND ND 1,200 58,000 Nay No No No Bromachioromethane 077 38 49 ND ND 310 14,000 Nay No No <td>Acetone</td> <td>0/7</td> <td>130</td> <td>220</td> <td>ND</td> <td>ND</td> <td></td> <td>61,000,000</td> <td>110,000,000</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	Acetone	0/7	130	220	ND	ND		61,000,000	110,000,000	<u>Nav</u>	No	No	No
Brandelikonsettane 0/7 38 49 ND ND Nav Nav No	Benzene	0/7	38	49	ND	ND		1,200	54,000	Nav	No	No	No
Bromodchloromethane 07 38 49 ND ND 31U H4,000 Nav No No <th< td=""><td>Bromochloromethane</td><td>0/7</td><td>38</td><td>49</td><td>ND</td><td>ND</td><td></td><td>Nav</td><td>Nav</td><td>Nav</td><td>No</td><td>No</td><td>No</td></th<>	Bromochloromethane	0/7	38	49	ND	ND		Nav	Nav	Nav	No	No	No
dromotrim 01/1 38 49 ND	Bromodichloromethane	0/7	38	49	ND	ND ND		310	14,000	<u>Nav</u>	No	No	No
Bromomethane 0// 130 190 ND	Bromotorm	0/7	38	49	ND ND	ND		20,000	910,000	Nav	No	No	No
Carbon insuring 0.7 38 49 N.D N.D 740,00 780,00 Nav N.D N.D N.D Chron terracitoride 0.77 38 49 N.D N.D 280,000 74,000 Nav N.D	Bromometnane	0/7	130	160	ND	ND		7,300	32,000	Nav	No	No	No
Carlos functione 07 38 49 ND ND m D0000 20,000 20,000 20,000 ND	Carbon disunde	0/7	30	49	ND ND			740,000	740,000	Nav	No	NO	NO
Cind Delization O/7 38 49 ND	Chlorobonzono	0/7	30	49	ND ND			200,000	760,000	Nav	No	NO	No
Construints	Chloroethane	0/7	130	49				2 100 000	2 100 000	Nav	No	No	No
Constraint Origination Origination <thorigination< th=""> <thorigination< th=""></thorigination<></thorigination<>	Chloroform	0/7	38	100				340	15 000	Nav	No	No	No
cis-12.Dichloresthene 0/7 38 49 ND ND 17,000 80,000 Nav No No No cis-12.Dichloropropene 0/7 38 49 ND ND Nav Nav Nav Nav No	Chloromethane	0/7	130	160	ND	ND		120,000	500.000	Nav	No	No	No
cis-1,3-Dichloropropene 0/7 38 49 ND N	cis-1 2-Dichloroethene	0/7	38	49	ND	ND		17 000	80,000	Nav	No	No	No
Cyclohexanore 0/7 38 160 ND ND 120,000 120,000 Nay No No No Cyclohexanore 0/6 38 44 ND ND 6,100,000 Nay No No No No Dichorochinomethane 0/7 38 160 ND ND 94,000 400,000 Nay No No No No Dichorochinomethane 0/7 38 49 ND ND 94,000 400,000 Nay No No No No Eitylbenzene 0/7 38 49 ND ND 270,000 Nay No No </td <td>cis-1,2-Dichloropropene</td> <td>0/7</td> <td>38</td> <td>49</td> <td>ND</td> <td></td> <td></td> <td>Nav</td> <td>Nav</td> <td>Nav</td> <td>No</td> <td>No</td> <td>No</td>	cis-1,2-Dichloropropene	0/7	38	49	ND			Nav	Nav	Nav	No	No	No
Criciotexanone 0/6 38 44 ND ND 5,100,000 5,100,000 Nay No No No No Diaronochioromethane 0/7 38 49 ND ND 8,300 390,000 Nay No No No No Diaronochioromethane 0/7 38 160 ND ND 84,000 490,000 Nay No No No No Ethylforzene 0/7 38 49 ND ND 6,200 270,000 Nay No No No No Sigoroylbenzene 0/7 38 49 ND ND 270,000 Nay Nay No	Cyclohexane	0/7	38	160	ND	ND		120.000	120.000	Nav	No	No	No
Disromechioromethane 0/7 38 49 ND ND 8,300 330,000 Nax No No No No Dichorodifluoromethane 0/7 38 160 ND ND 94,000 400,000 Nay No No No No No Dichorodifluoromethane 0/7 38 49 ND ND 94,000 270,000 Nay No No No No No Isopropylberzene 0/7 38 49 ND ND 270,000 Nay No	Cyclohexanone	0/6	38	44	ND	ND		5.100.000	5.100.000	Nav	No	No	No
Dichlorodifluoromethane 0/7 38 160 ND ND 94,000 400,000 Nav No No No Ethylberzene 0/7 38 49 ND ND 6,200 270,000 Nav No No No No Sigoroythenzene 0/7 38 49 ND ND 6,200 270,000 Nav No No No No No No No sigoroythenzene 0/7 38 49 ND ND 52,07 (0.0.5') Nav Nav Nav No <	Dibromochloromethane	0/7	38	49	ND	ND		8,300	390,000	Nav	No	No	No
Ethylbenzene 0/7 38 49 ND ND 6.200 270,000 Nav No No No Isopropylbenzene 0/7 38 49 ND ND 270,000 Nav Nav No	Dichlorodifluoromethane	0/7	38	160	ND	ND		94,000	400,000	Nav	No	No	No
isopropilenzene 0/7 38 49 ND ND 270,000 270,000 Nav Nav No No No m,p-Xylene 5/7 80 98 30 J 89 SS-07 (0-0.5') Nav Nav Nav Nav Nav No No No No Methyl acetate 4/7 250 270 99 J 230 J SS-07 (0-0.5') 20,000 Nav Nav No	Ethylbenzene	0/7	38	49	ND	ND		6,200	270,000	Nav	No	No	No
m.p-Xylene 5/7 80 98 30 J 89 SS-07 (0-0.5') Nav	Isopropylbenzene	0/7	38	49	ND	ND		270,000	270,000	<u>Nav</u>	No	No	No
Methyl acetate 4/7 250 270 99 J 230 J SS-01 (0-0.5') 23,000,000 Nay No No No Methyl tert-butyl ether 0/7 38 49 ND ND 50,000 2,200,000 Nay No No No No Methylcyclohexane 4/7 39 49 73 190 SS-07 (0-0.5') Nav Nav Nay No	m,p-Xylene	5/7	80	98	30 J	89	SS-07 (0-0.5')	Nav	Nav	<u>Nav</u>	No	No	No
Methyl tert-butyl ether 0/7 38 49 ND ND 50,000 2,200,000 Nav No No No No Methylcyclohexane 4/7 39 49 73 190 SS-07 (0-0.5') Nav Nav Nav Nav No No No No Methylene chloride 1/17 38 44 380 J FD-1 (0-2') Duplicate of SS-15 58,000 3,00,000 Nav No No No No Naphthalene 0/1 160 ND ND 2,400 110,000 Nav No No No No Styrene 4/7 40 49 ND ND 870,000 870,000 Nav No No <t< td=""><td>Methyl acetate</td><td>4/7</td><td>250</td><td>270</td><td>99 J</td><td>230 J</td><td>SS-01 (0-0.5')</td><td>23,000,000</td><td>29,000,000</td><td><u>Nav</u></td><td>No</td><td>No</td><td>No</td></t<>	Methyl acetate	4/7	250	270	99 J	230 J	SS-01 (0-0.5')	23,000,000	29,000,000	<u>Nav</u>	No	No	No
Methylcyclohexane 4/7 39 49 73 190 SS-07 (0-0.5') Nav Nav <td>Methyl tert-butyl ether</td> <td>0/7</td> <td>38</td> <td>49</td> <td>ND</td> <td>ND</td> <td></td> <td>50,000</td> <td>2,200,000</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	Methyl tert-butyl ether	0/7	38	49	ND	ND		50,000	2,200,000	<u>Nav</u>	No	No	No
Methylene chloride 117 38 44 380 J 380 J FD-1 (0-2) Duplicate of SS-15 58,000 3,300,000 Nav No No No No Naphthalene 0/1 160 160 ND ND 2,400 110,000 Nav No No No No O-Xylene 4/7 40 49 17 J 53 SS-10 (0-0.5') Nav Nav No No No No Styrene 0/7 38 49 ND ND 870,000 870,000 Nav No No No Tetrachloroethene 0/7 38 49 ND ND 25,000 170,000 Nav No No No Tans-1,2-Dichloroethene 0/7 38 49 ND ND Nav Nav Nav No No No Trans-1,2-Dichloroethene 0/7 38 49 ND ND </td <td>Methylcyclohexane</td> <td>4/7</td> <td>39</td> <td>49</td> <td>73</td> <td>190</td> <td>SS-07 (0-0.5')</td> <td>Nav</td> <td>Nav</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	Methylcyclohexane	4/7	39	49	73	190	SS-07 (0-0.5')	Nav	Nav	<u>Nav</u>	No	No	No
Naphthalene 0/1 160 160 ND ND 2,400 110,000 Nav No No No No o-Xylene 4/7 40 49 17 J 53 SS-10 (0-0.5') Nav Nav Nav No No No No Styrene 0/7 38 49 ND ND 870,000 870,000 Nav No No No No Tetrachoroethene 0/7 38 49 ND ND 25,000 870,000 Nav No No No Toluene 4/7 39 49 25 J 110 SS-07 (0-0.5') 820,000 820,000 Nav No No No trans-1,2-Dichloroethene 0/7 38 49 ND ND 75,000 320,000 Nav No No No trans-1,3-Dichloroptopene 0/7 38 49 ND ND <td>Methylene chloride</td> <td>1/7</td> <td>38</td> <td>44</td> <td>380 J</td> <td>380 J</td> <td>FD-1 (0-2') Duplicate of SS-15</td> <td>58,000</td> <td>3,300,000</td> <td><u>Nav</u></td> <td>No</td> <td>No</td> <td>No</td>	Methylene chloride	1/7	38	44	380 J	380 J	FD-1 (0-2') Duplicate of SS-15	58,000	3,300,000	<u>Nav</u>	No	No	No
o-Xylene 4/7 40 49 17 J 53 SS-10 (0-0.5') Nav	Naphthalene	0/1	160	160	ND	ND		2,400	110,000	<u>Nav</u>	No	No	No
Styrene 0/7 38 49 ND ND 870,000 870,000 Nav No No No Tetrachloroethene 0/7 38 49 ND ND 25,000 170,000 Nav No No No No Toluene 4/7 39 49 25 J 110 SS-07 (0-0.5') 820,000 820,000 Nav No No No trans-1,2-Dichloroethene 0/7 38 49 ND ND 75,000 320,000 Nav No No No trans-1,3-Dichloroethene 0/7 38 49 ND ND Nav Nav Nav No No No trans-1,3-Dichloropropene 0/7 38 49 ND ND Nav Nav Nav No No No Trichlorofluoromethane 0/7 38 49 ND ND 6	o-Xylene	4/7	40	49	17 J	53	SS-10 (0-0.5')	Nav	Nav	Nav	No	No	No
Interactionocemene 0// 38 49 ND ND 25,000 170,000 Nav No No No Toluene 4/7 39 49 25 J 110 SS-07 (0-0.5') 820,000 820,000 Nav No No No No trans-1,2-Dichloroethene 0/7 38 49 ND ND 75,000 320,000 Nav No No No No trans-1,3-Dichloroethene 0/7 38 49 ND ND Nav Nav Nav Nav Nav Nav No No No Trichloroethene 0/7 38 49 ND ND 1,000 20,000 Nav No No No Trichloroethene 0/7 38 49 ND ND 1,000 20,000 Nav No No No Trichlorofluoromethane 0/7 38	Styrene	0/7	38	49				870,000	870,000	Nav	No	No	No
Induce 4// 39 49 25 J 110 SS-07 (0-0.5') 820,000 820,000 Nav No	I etrachioroethene	0/7	38	49	ND ND	ND 110		25,000	170,000	Nav	No	No	No
urans-1,2-Dictionocemente 0// 38 49 ND ND 75,000 320,000 Nav No No No trans-1,3-Dichloropropene 0/7 38 49 ND ND Nav Nav Nav Nav No No No Trichloroethene 0/7 38 49 ND ND 1,000 20,000 Nav No No No Trichloroethene 0/7 38 49 ND ND 1,000 20,000 Nav No No No Trichlorofluoromethane 0/7 38 49 ND ND 790,000 18,000 Nav No No No Vinyl chloride 0/7 38 49 ND 61 18,000 Nav No No Vingle chloride 4/7 120 150 47 J 140 SS-07 (0-0 5') 260,000 Nav <td>1 oluene</td> <td>4//</td> <td>39</td> <td>49</td> <td>25 J</td> <td>110</td> <td>SS-07 (0-0.5')</td> <td>820,000</td> <td>820,000</td> <td>Nav</td> <td>No</td> <td>No</td> <td>NO NO</td>	1 oluene	4//	39	49	25 J	110	SS-07 (0-0.5')	820,000	820,000	Nav	No	No	NO NO
Initial strate in the property of the strate in t	trans 1.2 Dichloropropopo	0/7	38	49				75,000 Nov	320,000	<u>INAV</u>	NO No	INO No	NO No
Inclusion definition 0/1 30 49 ND ND 1,000 120,000 Nav No No No No Trichlorofluoromethane 0/7 38 49 ND ND 790,000 120,000 Nav No No No Vinyl chloride 0/7 38 49 ND ND 61 18,000 Nav No No No Vinyl chloride 4/7 120 150 47 J 140 \$\$S\$-07 (0-5') 260,000 Nav No No No	Trichleroothopo	0/7	<u> </u>	49				1 000	20.000	Nav	INO No	INO No	INO No
Vinyl chloride 0/1 30 49 ND ND 79,000 1,200,000 Nav NO NO NO Vinyl chloride 0/7 38 49 ND ND 61 18,000 Nav No No No Xvlenes, Total 4/7 120 150 47,1 140 SS-07 (0-0.5') 260,000 Nav No No No	Trichlorofluoromethane	0/7	38 20	49				700.000	20,000	Nav	NO No	INO No	INO No
Xvienes, Total 4/7 120 150 47 J 140 SS-07 (0-0.5') 260,000 Nav No	Vinvl chloride	0/7	38	49				61	18 000	Nav	No	No	No
	Xvlenes, Total	Δ/7	120	150	47.1	140	SS-07 (0-0 5')	260.000	260.000	Nav	No	No	No

tact al nt of OC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
	No	
	NO No	
	NO	
	No N-	
	INO No	
	INU	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (μg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (µg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (μg/Kg) ^[2]	<u>WV Natural</u> Background Values	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Contact Residential Contaminant of Concern (COC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
						s	VOCs							
1.1`-Biphenvl	7/11	210	390	6.4 J	260	SS-05 (0-0.5')	51.000	210.000	Nav	No	No	No	No	
1,2,4,5-Tetrachlorobenzene	0/11	360	3,900	ND	ND	(17,000	150,000	Nav	No	No	No	No	
1,4-Dioxane	0/11	180	2,000	ND	ND		5,400	250,000	Nav	No	No	No	No	
2,2`-Oxybis(1-chloropropane)	0/11	35	390	ND	ND		5,100	230,000	<u>Nav</u>	No	No	No	No	
2,3,4,6-Tetrachlorophenol	0/11	72	790 UJ*	ND	ND		1,900,000	25,000,000	<u>Nav</u>	No	No	No	No	
2,4,5-Trichlorophenol	0/11	35	390	ND	ND		6,300,000	82,000,000	<u>Nav</u>	No	No	No	No	
2,4,6-Trichlorophenol	0/11	35	390	ND	ND		49,000	820,000	Nav	No	No	No	No	
2,4-Dichlorophenol	0/11	35	390	ND	ND ND		190,000	2,500,000	<u>Nav</u>	No	No	No	No	
2,4-Dimethylphenol	0/11	35	390 UJ*	ND	ND		1,300,000	16,000,000	<u>Nav</u>	No	No	No	No	
2,4-Dinitrophenol	0/11	35	390 R				130,000	74.000	<u>Nav</u>	NO No	NO No	NO	NO	
2,6-Dinitrotoluene	0/11	35	390	ND	ND		360	15,000	<u>Nav</u>	Yes	No	No	No	Reporting limit exceeds residential standard, but constituent not
2-Chloronanhthalene	0/11	7 1	78	ND	ND		5 000 000	50,000,000	Nav	No	No	No	No	
2-Chlorophenol	0/11	35	390 UJ*	ND	ND		340,000	3,900.000	Nav	No	No	No	No	
2-Methylphenol	0/11	35	390	ND	ND		3,200,000	41,000,000	Nav	No	No	No	No	
2-Nitroaniline	0/11	35	390	ND	ND		630,000	8,000,000	Nav	No	No	No	No	
2-Nitrophenol	0/11	35	390	ND	ND		Nav	Nav	Nav	No	No	No	No	
3&4-Methylphenol	0/11	35	390	ND	ND		3,200,000	41,000,000	<u>Nav</u>	No	No	No	No	
3,3'-Dichlorobenzidine	0/11	180	2,000	ND	ND		1,200	51,000	<u>Nav</u>	Yes	No	No	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
3-Nitroaniline	0/11	35	390	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No	No	
4,6-Dinitro-2-methylphenol	0/11	35	390 R*	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No	No	
4-Bromophenyl phenyl ether	0/11	35	390	ND	ND		Nav	Nav	Nav	No	No	No	No	
4-Chloro-3-methylphenol	0/11	35	390	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No	No	
4-Chloroaniline	0/11	72	790	ND	ND		2,700	110,000	<u>Nav</u>	No	No	NO	No	
4-Chiorophenyi phenyi ether	0/11	30	390.01				Nav	Nav	Nav	No	No	NO	NO	
4-Nitronhenol	0/11	35	390 111*		ND		Nav	Nav	Nav	No	No	No	No	
Acetophenone	0/11	35	390	ND	ND		2 500 000	2 500 000	Nav	No	No	No	No	
Atrazine	0/11	35	390	ND	ND		2,400	100,000	Nav	No	No	No	No	
Benzaldehyde	0/11	72	790	ND	ND		170,000	1,200,000	Nav	No	No	No	No	
Bis(2-chloroethoxy)methane	0/11	35	390 UJ*	ND	ND		Nav	Nav	Nav	No	No	No	No	
Bis(2-chloroethyl)ether	0/11	35	390	ND	ND		240	11,000	<u>Nav</u>	Yes	No	No	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
Bis(2-ethylhexyl)phthalate	5/11	36	380	35 J	620	SS-13 (0-0.5')	39,000	1,600,000	Nav	No	No	No	No	
Butyl benzyl phthalate	4/11	36	390	49	500 J*	SS-12 (0-0.5')	290,000	12,000,000	<u>Nav</u>	No	No	No	No	
Caprolactam	0/11	35	390 UJ*	ND	ND		31,000,000	400,000,000	<u>Nav</u>	No	No	No	No	
Carbazole	7/11	35	390 UJ*	190 J	440	SS-04 (0-0.5')	Nav	Nav	Nav	No	No	No	No	
Dibenzofuran	8/11	35	390 UJ*	<u>30 J</u>	720	SS-04 (0-0.5')	78,000	1,200,000	<u>Nav</u>	No	No	No	No	
Diethyl phthalate	0/11	35	390 UJ^	ND	ND		51,000,000	660,000,000	Nav	NO	NO	NO	NO	
Dimetnyi phthalate	0/11	35	390 R				6 300 000	82 000 000	Nav	No	No	NO	No	
Di-n-octvl phthalate	0/11	35	390		ND		0,300,000 Nav	Nav	Nav	No	No	No	No	
Hexachlorobenzene	0/11	35	390	ND	ND		220	10,000	Nav	Yes	No	No	No	Reporting limit exceeds residential standard, but constituent not detected in any samples
Hexachlorobutadiene	0/11	35	390 UJ*	ND	ND		1,300	17,000	Nav	No	No	No	No	
Hexachlorocyclopentadiene	0/11	35	390 R*	ND	ND		1,900	8,000	Nav	No	No	No	No	
Hexachloroethane	0/11	35	390 UJ*	ND	ND		2,000	86,000	Nav	No	No	No	No	
Isophorone	0/11	180	2,000	ND	ND		570,000	24,000,000	Nav	No	No	No	No	
Nitrobenzene	0/11	180	2,000	ND	ND		5,500	240,000	Nav	No	No	No	No	
N-Nitrosodi-n-propylamine	0/11	35	390 UJ*	ND	ND		78	3,300	<u>Nav</u>	Yes	No	No	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
N-Nitrosodiphenylamine	0/11	35	390 UJ*	ND	ND		110,000	7,200,000	Nav	No	No	No	No	
Pentachlorophenol	0/11	35	390	ND	ND		1,000	40,000	Nav	No	No	No	No	
Phenol	1/11	35	390	47	47	SS-02 (0-0.5')	19,000,000	250,000,000	Nav	No	No	No No	No	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (μg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	WV Natural Background Values	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Cont Residenti Contaminar Concern (C
			1			-	PAHs					· · · ·
2-Methylnaphthalene	11/11			1.9 J	150	SS-04 (0-0.5')	310,000	4,700,000	Nav			No
Acenaphthene	12/12			1.0 J	420	SS-04 (0-0.5')	4,100,000	47,000,000	Nav			No
Acenaphthylene	12/12			9.1	10,000	SS-04 (0-0.5')	4,200,000	51,000,000	Nav			No
Anthracene	12/12			9.2	7,700	SS-04 (0-0.5')	23,000,000	350,000,000	<u>Nav</u>			No
Benzo(a)anthracene	12/12			19	42,000	SS-04 (0-0.5')	1,500	320,000	<u>Nav</u>			Yes
Benzo(a)pyrene	12/12			23	36,000	SS-04 (0-0.5')	110	21,000	<u>Nav</u>			Yes
Benzo(b)fluoranthene	12/12			51	47,000	SS-04 (0-0.5')	1,100	210,000	<u>Nav</u>			Yes
Benzo(g,h,i)perylene	12/12			20	15,000	<u>SS-04 (0-0.5')</u>	1,800,000	23,000,000	<u>Nav</u>			No
Benzo(k)fluoranthene	12/12			16	16,000	SS-04 (0-0.5')	11,000	2,100,000	<u>Nav</u>			Yes
Chrysene	12/12			28	39,000	SS-04 (0-0.5')	110,000	21,000,000	<u>Nav</u>			No
Dibenzo(a,n)anthracene	12/12			4.7	4,100	SS-04 (0-0.5')	2 400 000	21,000	<u>Nav</u>			Yes
Fluorantinene	12/12			32.0	1 100	<u> </u>	2,400,000	37,000,000	<u>Nav</u>			No
Indeno(1 2 3-cd)nyrene	12/12			2.1 5	17,000	SS-04 (0-0.5')	1 100	210,000	Nav			Ves
Nanhthalene	12/12			14.1	230	SS-04 (0-0.5')	2 400	110,000	Nav			No
Phenanthrene	12/12			16	8 500	SS-04 (0-0.5')	23.000.000	350.000.000	Nav			No
Pyrene	12/12			44	72.000	SS-04 (0-0.5')	2,300,000	34,000,000	Nav			No
	•				•	He	rbicides		·			
2 4-Dichlorophenoxyacetic acid (2 4-D)	0/13	72.4	133		ND		700 000	9 600 000	Nav	No	No	No
4-(2.4-Dichlorophenoxy)butyric acid (2.4-DB)	0/13	72.4	133	ND	ND		1,900,000	25 000 000	Nav	No	No	No
2.4.5-Trichlorophenoxyacetic acid (2.4.5-T)	0/13	72.4	226	ND	ND		630.000	8.200.000	Nav	No	No	No
2-(2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP)	0/13	72.4	133	ND	ND		510,000	6,600,000	Nav	No	No	No
Dalapon	0/1	125	133	ND	ND		1,900,000	25,000,000	Nav	No	No	No
Dicamba	0/1	125	133	ND	ND		1,900,000	25,000,000	Nav	No	No	No
Dichloroprop	0/1	125	133	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Dinoseb	0/1	213	226	ND	ND		63,000	820,000	<u>Nav</u>	No	No	No
МСРА	0/1	15,000	16,000	ND	ND		32,000	410,000	<u>Nav</u>	No	No	No
MCPP	0/1	15,000	16,000	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Pentachlorophenol	0/1	125	133	ND ND	I ND		1,000	40,000	Nav	No	No	l No
						Meta	Is/Other ^[3]					
Mercury	12/12			0.015 J	0.98	SS-04 (0-0.5')	3.1	3.1	<u>0.09</u>			No
Aluminum	11/11			3,500	9,200	SS-05 (0-0.5')	77,000	1,000,000	<u>77120</u>			No
Antimony	9/11	3.7	4.5 U*	1.4	49	SS-04 (0-0.5')	31	470	<u>0.89</u>	No	No	Yes
Arsenic	12/12			4.4	400	SS-04 (0-0.5')	0.68	30	<u>13.1</u>			Yes
Barium	12/12			36	1,200	SS-04 (0-0.5')	15,000	220,000	<u>565</u>			No
Codmium	6/12			0.11 J	1.0	SS-05 (0-0.5)	37	2,300	2.0			NO No
	11/11	0.77 0	9.10	2000	2.0	SS-13 (0-0.5)	Nav	Nav	3300	N0	INO	No
Chromium*	12/12			87	48	SS-03 (0-0.5')	120 000	1 000 000	<u>57 4</u>			No
Cobalt	11/11			4.2	15	SS-04 (0-0 5')	23	350	23.8			No
Copper	11/11			12	1,100	SS-04 (0-0.5')	3.100	47.000	27.5			No
Iron	11/11			8,000	120,000	SS-04 (0-0.5')	55,000	820,000	39380			Yes
Lead	12/12			9.3	3,500	SS-04 (0-0.5')	100**	247***	38			Yes
Magnesium	11/11			600	12,000	SS-11 (0-0.5')	Nav	Nav	5640			No
Manganese	11/11			160	1,100	SS-09 (0-0.5')	1,800	26,000	<u>1998</u>			No
Nickel	11/11			6.8	30	SS-04 (0-0.5')	1,500	22,000	<u>34.4</u>			No
Potassium	11/11			330 J+*	750	SS-11 (0-0.5')	Nav	Nav	<u>19880</u>			No
Selenium	12/12			1.4	4.3 J	SS-13 (0-0.5')	390	5,800	<u>0.8</u>			No
Silver	3/12	0.37	0.45	0.16 J,J+*	0.44 J	FD-1 (0-2') Duplicate of SS-15	390	5,800	<u><1</u>	No	No	No
Thallium	0/11	0.71	 0 1	25 ND	4100 J+*	55-05 (0-0.5')	Nav	Nav	<u>3600</u> 0.8	 Yee	 No	No No
	0/11	0.71	J.1				0.78	12	<u>0.0</u>	100		
	11/11			1.4	29 J+*	<u>55-05 (0-0.5')</u>	460	8,400	<u>98.8</u>			NO No
Zinc	11/11			1 110	J 3100 B	ວວ-ບວ (U-U.5 [°])	20,000	330,000	103			I NO

act al tof DC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
	No	
_	No	
_	No	
	No	
	No	
	Yes	
	No	
	No	
_	No	
_	No	
	No	
	No	
	No	
	No	
	No	
	Yes	
	No	
_	No	
	INO	Reporting limit exceeds residential standard, but constituent not
	No	detected in any samples
	No	
	No	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (µg/Kg)	Maximum Reporting Limit (μg/Kg)	Minimum Detected Concentration (µg/Kg)	Maximum Detected Concentration (µg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	<u>WV Natural</u> Background <u>Values</u>	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Contact Residential Contaminant of Concern (COC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
PCBs														
Aroclor-1016	0/12	71	230	ND	ND		5,500	82,000	Nav	No	No	No	No	
Aroclor-1221	0/12	71	230	ND	ND		260	12,000	Nav	No	No	No	No	
Aroclor-1232	0/12	71	230	ND	ND		220	10,000	Nav	No	No	No	No	
Aroclor-1242	0/12	71	230	ND	ND		310	15,000	Nav	No	No	No	No	
Aroclor-1248	0/12	71	230	ND	ND		310	15,000	Nav	No	No	No	No	
Aroclor-1254	2/12	71	230	180	350	SS-07 (0-0.5')	320	15,000	Nav	No	No	Yes	No	
Aroclor-1260	3/12	71	230	45 J	140	SS-07 (0-0.5')	330	16,000	Nav	No	No	No	No	
Aroclor-1262	0/11	71	86	ND	ND		Nav	Nav	Nav	No	No	No	No	
Aroclor-1268	0/11	71	86	ND	ND		Nav	Nav	Nav	No	No	No	No	

Notes:

Nav - No screening value available

ND - Constituent not detected

"---" - not applicable

J - analyte is present at an estimated concentration between the MDL and Report Limit

B - analyte detected in the associated Method Blank above the Reporting Limit

J* - per data validation report, data are to be used cautiously as they are estimated data with some quality control issues

J+* - per data validation report, the data are an estimated value with potential high bias

R* - per data validation report, data are not to be used

U* - per data validation report, the parameter was qualified as undetected during data validation

UJ* - per data validation report, data are undetected at an estimated quantitation limit because of a quality control outlier

** = May 2024 USEPA Residential Regional Screening Level (RSL) based on multiple sources of lead

*** = Industrial screening value of 247 mg/kg is based on proposed WVDEP industrial soil de minimis standard for lead (426 mg/kg) adjusted from a target blood lead level of 5 ug/dL to 3.5 ug/dL to account for multiple sources of lead

[1] For those soil samples that had a duplicate sample collected, the higher of the two concentrations from the original and duplicate sample were used to select the maximum detected concentration. In addition, the original and duplicate sample detected results were counted as one sample for purposes of frequency of detection.

[2] WVDEP residential and industrial soil de minimis standard (November 30, 2023)

[3] The analytical results and screening values for metals are in mg/kg rather than ug/kg.

[5] Trivalent chromium de minimis standards utilized to screen total chromium analytical results due to no source of hexavalent chromium.
Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (µg/Kg)	Maximum Reporting Limit (µg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	<u>WV Natural</u> Background <u>Values</u>	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Conta Residentia Contaminant Concern (CC
							VOCs					
1 1 1-Trichloroethane	0/11	36	41	ND	ND		640 000	640 000	Nav	No	No	No
1 1 2 2-Tetrachloroethane	0/11	36	41	ND	ND		640	28,000	Nav	No	No	No
1.1.2-Trichloroethane	0/11	36	41	ND	ND		1.200	6.800	Nav	No	No	No
1.1.2-Trichlorotrifluoroethane	0/11	36	41	ND	ND		910,000	910,000	Nav	No	No	No
1,1-Dichloroethane	0/11	36	41	ND	ND		3,800	170,000	Nav	No	No	No
1,1-Dichloroethene	0/11	36	41	ND	ND		240,000	1,100,000	Nav	No	No	No
1,2,3-Trichlorobenzene	0/11	36	120	ND	ND		Nav	Nav	Nav	No	No	No
1,2,4-Trichlorobenzene	0/11	36	120	ND	ND		24,000	280,000	Nav	No	No	No
1,2-Dibromo-3-chloropropane (DBCP)	0/11	120	140	ND	ND		5.7	690	<u>Nav</u>	Yes	No	No
1,2-Dibromoethane	0/11	36	41	ND	ND		39	1,700	<u>Nav</u>	Yes	No	No
1,2-Dichlorobenzene	0/11	36	41	ND	ND		380,000	380,000	Nav	No	No	No
1,2-Dichloroethane	0/11	36	120	ND	ND		500	22,000	Nav	No	No	No
1,2-Dichloropropane	0/11	36	41	ND	ND		2,700	71,000	Nav	No	No	No
1,3-Dichlorobenzene	0/11	36	41	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
1,4-Dichlorobenzene	0/11	36	41	ND	ND ND		2,800	120,000	Nav	No	No	No
2-Butanone	1/11	240	280	130 J	130 J	FD-2 (Duplicate of SB-15 6-8')	28,000,000	28,000,000	<u>Nav</u>	No	No	No
2-Hexanone	0/11	36	41	ND	ND ND		Nav	Nav	Nav	No	No	No
4-Methyl-2-pentanone	0/11	36	41	ND	ND ND		3,400,000	3,400,000	Nav	No	No	No
Bonzono	0/11	120	140				1 200	54,000	<u>Nav</u>	No	NO	No
Bromochloromethane	0/11	36	41				Nav	Nav	Nav	No	No	No
Bromodichloromethane	0/11	36	41	ND			310	14 000	Nav	No	No	No
Bromoform	0/11	36	41	ND	ND		20.000	910.000	Nav	No	No	No
Bromomethane	0/11	120	140	ND	ND		7.300	32.000	Nav	No	No	No
Carbon disulfide	0/11	36	41	ND	ND		740,000	740,000	Nav	No	No	No
Carbon tetrachloride	0/11	36	41	ND	ND		700	31,000	Nav	No	No	No
Chlorobenzene	0/11	36	41	ND	ND		290,000	760,000	Nav	No	No	No
Chloroethane	0/11	120	140	ND	ND		2,100,000	2,100,000	Nav	No	No	No
Chloroform	0/11	36	41	ND	ND		340	15,000	<u>Nav</u>	No	No	No
Chloromethane	0/11	120	140	ND	ND		120,000	500,000	<u>Nav</u>	No	No	No
cis-1,2-Dichloroethene	0/11	36	41	ND	ND		17,000	80,000	<u>Nav</u>	No	No	No
cis-1,3-Dichloropropene	0/11	36	41	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Cyclohexane	0/11	36	120	ND	ND		120,000	120,000	<u>Nav</u>	No	No	No
Cyclohexanone	0/10	36	41	ND	ND		5,100,000	5,100,000	Nav	No	No	No
Dibromochloromethane	0/11	36	41	ND	ND ND		8,300	390,000	Nav	No	No	No No
Dicniorodifiuorometnane	0/11	36	120	ND	ND ND		94,000	400,000	Nav	NO No	NO No	NO No
	0/11	30	41				0,200	270,000	<u>INAV</u>	NO No	INO No	NO No
isopropyidenzene	0/11	30	41		ND ND		270,000 Nov	270,000 Nov	Nav	No	NO	NO No
Mothyl acotato	1/11	240	280	200 1		 SB_15 (6_8')	23 000 000	29 000 000	Nav	No	No	No No
Methyl tert-hutyl ether	0/11	36	41	200 J	200 J	35-13 (0-0)	50,000	2 200 000	Nav	No	No	No
Methylcyclohexane	0/11	36	41	ND	ND		Nav	Nav	Nav	No	No	No
Methylene chloride	1/11	36	41	230 J	230 J	SB-15 (6-8')	58.000	3.300.000	Nav	No	No	No
Naphthalene	0/1	120	120	ND	ND		2,400	110,000	Nav	No	No	No
o-Xylene	0/11	36	41	ND	ND		Nav	Nav	Nav	No	No	No
Styrene	0/11	36	41	ND	ND		870,000	870,000	Nav	No	No	No
Tetrachloroethene	0/11	36	41	ND	ND		25,000	170,000	Nav	No	No	No
Toluene	0/11	36	41	ND	ND		820,000	820,000	Nav	No	No	No
trans-1,2-Dichloroethene	0/11	36	41	ND	ND		75,000	320,000	Nav	No	No	No
trans-1,3-Dichloropropene	0/11	36	41	ND	ND		Nav	Nav	Nav	No	No	No
Trichloroethene	0/11	36	41	ND	ND		1,000	20,000	Nav	No	No	No
Trichlorofluoromethane	0/11	36	41	ND	ND		790,000	1,200,000	<u>Nav</u>	No	No	No
Vinyl chloride	0/11	36	41	ND	ND		61	18,000	Nav	No	No	No
Xylenes, Total	0/11	110	120	ND	I ND		260,000	260,000	Nav	No	No	l No

tact al nt of OC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
	No	
	No	
	No	
	No N-	
	No	
	INO No	
	No	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (µg/Kg)	Maximum Reporting Limit (µg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	<u>WV Natural</u> Background <u>Values</u>	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Cont Residentia Contaminan Concern (C0
						S	VOCs					
1,1`-Biphenyl	0/11	36	190	ND	ND		51,000	210,000	<u>Nav</u>	No	No	No
1,2,4,5-Tetrachlorobenzene	0/11	360	1,900	ND	ND		17,000	150,000	<u>Nav</u>	No	No	No
1,4-Dioxane	0/11	180	950	ND	ND		5,400	250,000	<u>Nav</u>	No	No	No
2,2 [°] -Oxybis(1-chloropropane)	0/11	36	190	ND	ND		5,100	230,000	<u>Nav</u>	No	No	No
2,3,4,6-Tetrachlorophenol	0/11	73	380	ND	ND ND		1,900,000	25,000,000	<u>Nav</u>	No	No	No
2,4,5-1 richlorophenol	0/11	36	190	ND	ND		6,300,000	82,000,000	<u>Nav</u>	No	NO	NO No
2,4,6-1 richlorophenol	0/11	30	190				49,000	2 500 000	Nav	No	No	NO NO
2.4-Dimethylphenol	0/11	36	190	ND			1 300,000	16,000,000	Nav	No	No	No
2.4-Dinitrophenol	0/11	36	190	ND	ND		130.000	1.600.000	Nav	No	No	No
2.4-Dinitrotoluene	0/11	36	190	ND	ND		1.700	74.000	Nav	No	No	No
2,6-Dinitrotoluene	0/11	36	190	ND	ND		360	15,000	Nav	No	No	No
2-Chloronaphthalene	0/11	7.3	38	ND	ND		5,000,000	50,000,000	Nav	No	No	No
2-Chlorophenol	0/11	36	190	ND	ND		340,000	3,900,000	<u>Nav</u>	No	No	No
2-Methylphenol	0/11	36	190	ND	ND		3,200,000	41,000,000	<u>Nav</u>	No	No	No
2-Nitroaniline	0/11	36	190	ND	ND		630,000	8,000,000	<u>Nav</u>	No	No	No
2-Nitrophenol	0/11	36	190	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
3&4-Methylphenol	0/11	36	190	ND	ND		3,200,000	41,000,000	<u>Nav</u>	No	No	No
3,3'-Dichlorobenzidine	0/11	180	950	ND	ND		1,200	51,000	<u>Nav</u>	No	No	No
3-Nitroaniline	0/11	36	190	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
4,6-Dinitro-2-methylphenol	0/11	30	190	ND	ND		Nav	Nav	<u>Nav</u>	NO	NO	NO No
4-Biomophenyi phenyi etner	0/11	36	190	ND			Nav	Nav	Nav	No	No	No
4-Chloroaniline	0/11	73	380	ND	ND		2 700	110 000	Nav	No	No	No
4-Chlorophenyl phenyl ether	0/11	36	190	ND	ND		Nav	Nav	Nav	No	No	No
4-Nitroaniline	0/11	180	950	ND	ND		Nav	Nav	Nav	No	No	No
4-Nitrophenol	0/11	36	190	ND	ND		Nav	Nav	Nav	No	No	No
Acetophenone	0/11	36	190	ND	ND		2,500,000	2,500,000	Nav	No	No	No
Atrazine	0/11	36	190	ND	ND		2,400	100,000	<u>Nav</u>	No	No	No
Benzaldehyde	0/11	73	380	ND	ND		170,000	1,200,000	<u>Nav</u>	No	No	No
Bis(2-chloroethoxy)methane	0/11	36	190	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Bis(2-chloroethyl)ether	0/11	36	190	ND ND	ND ND		240	11,000	<u>Nav</u>	No	No	No
Bis(2-ethylnexyl)phthalate	0/11	36	190	ND	ND		39,000	1,600,000	<u>Nav</u>	No	NO	NO No
Canrolactam	0/11	30	190				290,000	12,000,000	Nav	No	No	No No
Carbazole	0/11	36	190				Nav	400,000,000 Nav	Nav	No	No	No
Dibenzofuran	0/11	36	190	ND	ND		78,000	1,200,000	Nav	No	No	No
Diethyl phthalate	0/11	36	190	ND	ND		51.000.000	660.000.000	Nav	No	No	No
Dimethyl phthalate	0/11	36	190	ND	ND		Nav	Nav	Nav	No	No	No
Di-n-butyl phthalate	0/11	36	190	ND	ND		6,300,000	82,000,000	Nav	No	No	No
Di-n-octyl phthalate	0/11	36	190	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Hexachlorobenzene	0/11	36	190	ND	ND		220	10,000	<u>Nav</u>	No	No	No
Hexachlorobutadiene	0/11	36	190	ND	ND		1,300	17,000	<u>Nav</u>	No	No	No
Hexachlorocyclopentadiene	0/11	36	190	ND	ND		1,900	8,000	<u>Nav</u>	No	No	No
Hexachloroethane	0/11	36	190	ND	ND ND		2,000	86,000	<u>Nav</u>	No	No	No
ISOPNORONE Nitra hannana	0/11	180	950	ND	ND ND		570,000	24,000,000	Nav	NO	NO No	NO No
	0/11	160	900	UND			5,500	240,000	<u>inav</u>	INO	INO	
N-Nitrosodi-n-propylamine	0/11	36	190	ND	ND		78	3,300	<u>Nav</u>	Yes	No	No
N-Nitrosodiphenylamine	0/11	36	190		ND ND		110,000	7,200,000	<u>Nav</u>	No	No	No No
Pentachiorophenoi	0/11	36	190	ND 51	ND 51		1,000	40,000	Nav	No	NO No	NO No
Phenoi	1/11	30	190	51	1 51	SB-07 (11.5-13 [°])	19,000,000	250,000,000	INAV	INO	I INO	I NO

tact al nt of OC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
	No	Reporting limit exceeds residential standard, but constituent not detected in any samples.
	No	
	No	
	No	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (μg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (µg/Kg) ^[2]	<u>WV Natural</u> Background <u>Values</u>	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Cont Residentia Contaminan Concern (Co
	•						PAHs				•	
2-Methvinaphthalene	2/11	3.7	3.9	0.47 J	27	SB-06 (6-7')	310,000	4,700,000	Nav	No	No	No
Acenaphthene	2/12	3.7	4.6	0.29 J	16	SB-06 (6-7')	4,100,000	47,000,000	Nav	No	No	No
Acenaphthylene	8/12	3.8	4.6	1.2 J	360	SB-06 (6-7')	4,200,000	51,000,000	Nav	No	No	No
Anthracene	7/12	3.8	4.6	0.21 J	200	SB-06 (6-7')	23,000,000	350,000,000	<u>Nav</u>	No	No	No
Benzo(a)anthracene	7/12	3.8	4.6	1.2 J	730	SB-06 (6-7')	1,500	320,000	<u>Nav</u>	No	No	No
Benzo(a)pyrene	7/12	3.8	4.6	1.2 J	640	SB-06 (6-7')	110	21,000	<u>Nav</u>	No	No	Yes
Benzo(b)fluoranthene	7/12	3.8	4.6	1.8 J	880	SB-06 (6-7')	1,100	210,000	<u>Nav</u>	No	No	No
Benzo(g,h,i)perylene	4/12	3.8	4.6	1.1 J	390	SB-06 (6-7')	1,800,000	23,000,000	<u>Nav</u>	No	No	No
Benzo(k)fluorantnene	7/12	3.8	4.6	0.88 J	290	SB-06 (6-7')	11,000	2,100,000	<u>Nav</u>	No	NO	No
Chrysene Dibonzo(a b)anthracono	3/12	3.0	4.0	0.64 J	060	SB-06 (6-7)	110,000	21,000,000	<u>Nav</u>	No	No	No
Eluoranthene	3/12	3.8	4.0	5.8	90	SB-06 (6-7')	2 400 000	30,000,000	Nav	No	No	No
Fluorene	4/12	3.8	4.6	0.33 J	57	SB-06 (6-7')	2,900,000	37.000.000	Nav	No	No	No
Indeno(1.2.3-cd)pyrene	6/12	3.8	4.6	0.24 J	490	SB-06 (6-7')	1.100	210.000	Nav	No	No	No
Naphthalene	2/12	3.7	4.6	0.5 J	25	SB-06 (6-7')	2,400	110,000	Nav	No	No	No
Phenanthrene	7/12	3.8	4.6	0.43 J	470	SB-06 (6-7')	23,000,000	350,000,000	Nav	No	No	No
Pyrene	5/12	3.8	3.9	6.6	1,200	SB-06 (6-7')	2,300,000	34,000,000	Nav	No	No	No
						He	rbicides					
2.4-DB	0/12	75.1	117	ND	ND		700.000	9.600.000	Nav	No	No	No
2,4,5-T (Trichlorophenoxyacetic acid)	0/12	75.1	199	ND	ND		1,900,000	25,000,000	Nav	No	No	No
2,4-D (Dichlorophenoxyacetic acid)	0/12	75.1	117	ND	ND		630,000	8,200,000	Nav	No	No	No
Silvex (2,4,5-TP)	0/12	75.1	117	ND	ND		510,000	6,600,000	<u>Nav</u>	No	No	No
Dalapon	0/1	117	117	ND	ND		1,900,000	25,000,000	<u>Nav</u>	No	No	No
Dicamba	0/1	117	117	ND	ND		1,900,000	25,000,000	<u>Nav</u>	No	No	No
Dichloroprop	0/1	117	117	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No
Dinoseb	0/1	199	199	ND	ND		63,000	820,000	<u>Nav</u>	No	No	No
	0/1	14,000	14,000	ND	ND		32,000	410,000	<u>Nav</u>	No	No	No
MCPP Bentachlaranhanal	0/1	14,000	14,000		ND		1 000	10.000	<u>Nav</u>	NO	NO No	NO
Pentachiorophenol	0/1		117	ND			1,000	40,000	INdV	INU		
	10/10	1		0.000	0.40	Meta	is/Other • •	0.4	0.00			. N
Mercury	12/12			0.022	0.12	SB-06 (6-7')	3.1	3.1	0.09			No
Antimony	11/11			0,300	12,000	SB-09 (9.2-10)	31	1,000,000	0.80			No
Antimony	12/12			401*	17	SB-06 (6-7')/SB-09 (9.2-10')	0.68	30	<u>0.09</u> 13.1			Ves
Barium	12/12			21	98	SB-06 (6-7')	15.000	220.000	565			No
Bervllium	7/11	0.15 U*	0.19 U*	0.14 J	0.44	SB-09 (9.2-10')	160	2,300	2.8	No	No	No
Cadmium	0/12	0.73	0.94	ND	ND		37	530	0.5	No	No	No
Calcium	11/11			480	4,000	SB-06 (6-7')	Nav	Nav	<u>3300</u>			No
Chromium ^[4]	12/12			11 J+*	22 J+*	SB-01 (7-9.3')	120,000	1,000,000	<u>57.4</u>			No
Cobalt	11/11			3.8	15	SB-09 (9.2-10')	23	350	<u>23.8</u>			No
Copper	11/11			4.3	41	SB-06 (6-7')	3,100	47,000	<u>27.5</u>			No
Iron	11/11			17,000	35,000	SB-06 (6-7')/SB-09 (9.2-10')	55,000	820,000	<u>39380</u>			No
Lead	12/12			8.3	130	SB-06 (6-7')	100**	247***	<u>38</u>			Yes
Magnesium	11/11			450	1,400	SB-01 (7-9.3')	1 800	Nav	<u>5640</u>			NO No
Nickol	11/11			49		SB-01 (7.0.2')	1,600	20,000	<u>1998</u>			NO No
Potassium	11/11			2.1 340 l+*	590	SB-13 (9 3-11 1')	Nav	Nav	<u>94.4</u> 19880			No
Selenium	12/12			0.38	2.2	SB-09 (9.2-10')	390	5,800	0.8			No
Silver	1/12	0.36	0.47	0.18 J	0.18 J	SB-15 (6-8')	390	5,800	1	No	No	No
Sodium	9/11	16 U*	18 U*	19	340 J+*	SB-05 (5.3-7')	Nav	Nav	<u>36</u> 00	No	No	No
Thallium	0/11	0.73	0.94	ND	ND		0.78	12	0.8	Yes	No	No
Vanadium	11/11			20 J+	27	SB-13 (9.3-11.1')	460	8,400	<u>98.8</u>			No
Zinc	11/11			16 B,J+*	470 B,J+*	SB-06 (6-7')	23,000	350,000	103			No

act al It of OC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
	No	
	No	
	No	Poporting limit exceeds residential standard, but constituent not
	No	detected in any samples.
	No	
	No	

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (µg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (µg/Kg)	Sample with Maximum Detect	Residential Soil DeMinimis Standard (µg/Kg) ^[2]	Industrial Soil DeMinimis Standard (μg/Kg) ^[2]	<u>WV Natural</u> Background <u>Values</u>	Reporting Limit Exceeds Res. Criteria?	Reporting Limit Exceeds Ind. Criteria?	Direct Contact Residential Contaminant of Concern (COC)	Direct Contact Industrial Contaminant of Concern (COC)	Comment
						F	PCBs							
Aroclor-1016	0/12	74	78	ND	ND		5,500	82,000	<u>Nav</u>	No	No	No	No	
Aroclor-1221	0/12	74	78	ND	ND		260	12,000	<u>Nav</u>	No	No	No	No	
Aroclor-1232	0/12	74	78	ND	ND		220	10,000	<u>Nav</u>	No	No	No	No	
Aroclor-1242	0/12	74	78	ND	ND		310	15,000	<u>Nav</u>	No	No	No	No	
Aroclor-1248	0/12	74	78	ND	ND		310	15,000	<u>Nav</u>	No	No	No	No	
Aroclor-1254	0/12	74	78	ND	ND		320	15,000	<u>Nav</u>	No	No	No	No	
Aroclor-1260	0/12	74	78	ND	ND		330	16,000	<u>Nav</u>	No	No	No	No	
Aroclor-1262	0/11	74	78	ND	ND		Nav	Nav	Nav	No	No	No	No	
Aroclor-1268	0/11	74	78	ND	ND		Nav	Nav	<u>Nav</u>	No	No	No	No	

Notes:

Nav - No screening value available

ND - Constituent not detected

"---" - not applicable

J - analyte is present at an estimated concentration between the MDL and Report Limit

B - analyte detected in the associated Method Blank above the Reporting Limit

J* - per data validation report, data are to be used cautiously as they are estimated data with some quality control issues

J+* - per data validation report, the data are an estimated value with potential high bias

U* - per data validation report, the parameter was qualified as undetected during data validation

** = May 2024 USEPA Residential Regional Screening Level (RSL) based on multiple sources of lead

*** = Industrial screening value of 247 mg/kg is based on proposed WVDEP industrial soil de minimis standard for lead (426 mg/kg) adjusted from a target blood lead level of 5 ug/dL to 3.5 ug/dL to account for multiple sources of lead

[1] For those soil samples that had a duplicate sample collected, the higher of the two concentrations from the original and duplicate sample were used to select the maximum detected concentration. In addition, the original and duplicate sample detected results were counted as one sample for purposes of frequency of detection. [2] WVDEP residential and industrial soil de minimis standard (November 30, 2023)

[3] The analytical results and screening values for metals are in mg/kg rather than ug/kg.

[4] Trivalent chromium de minimis standards utilized to screen total chromium analytical results due to no source of hexavalent chromium.

Constituent of Potential Concern (COPC)	Frequency of Detection Minimum Reporting Maximum Reporting Maximum Detected Maximum Detected t of Potential Concern (COPC) (FOD) [1] Limit (µg/Kg) Limit (µg/Kg) (µg/Kg) (µg/Kg) Sample with Maximum Dete		Sample with Maximum Detect	Groundwater DeMinimis Standard (µg/L) ^[2]	Reporting Limit Exceeds Res. Criteria?	Direct Contact Contaminant of Concern (COC)				
						VOCs			1 , ,	
1 1 1-Trichloroethane	0/6	20	20				200	No	No	
1 1 2 2-Tetrachloroethane	0/0	20	20				0.076	Yes	No	Reporting limit exceeds are
1 1 2-Trichloroethane	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
1.1.2-Trichlorotrifluoroethane	0/6	20	20	ND	ND		10000	No	No	Troporting inne oxecodo gre
1.1-Dichloroethane	0/6	20	20	ND	ND		2.8	Yes	No	Reporting limit exceeds arc
1.1-Dichloroethene	0/6	20	20	ND	ND		7	Yes	No	Reporting limit exceeds are
1,2.3-Trichlorobenzene	0/6	20	20	ND	ND		Nav	No	No	
1,2,4-Trichlorobenzene	0/6	20	20	ND	ND		70	No	No	
1,2-Dibromo-3-chloropropane (DBCP)	0/6	20	20	ND	ND		0.2	Yes	No	Reporting limit exceeds gro
1,2-Dibromoethane	0/6	20	20	ND	ND		0.05	Yes	No	Reporting limit exceeds gro
1,2-Dichlorobenzene	0/6	20	20	ND	ND		600	No	No	
1,2-Dichloroethane	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
1,2-Dichloropropane	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
1,3-Dichlorobenzene	0/6	20	20	ND	ND		Nav	No	No	
1,4-Dichlorobenzene	0/6	20	20	ND	ND		75	No	No	
2-Butanone (MEK)	0/6	100	100	ND	ND		5600	No	No	
2-Hexanone	0/6	100	100	ND	ND		Nav	No	No	
4-Methyl-2-pentanone	0/6	20	20	ND	ND		1200	No	No	
Acetone	0/6	200	280	ND	ND		14000	No	No	
Benzene	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
Bromochloromethane	0/6	20	20	ND	ND		Nav	No	No	
Bromodichloromethane	0/6	20	20	ND	ND		80	No	No	
Bromoform	0/6	20	20	ND	ND		80	No	No	
Bromomethane	0/6	20	20	ND	ND		7.5	Yes	No	Reporting limit exceeds gro
Carbon disulfide	0/6	20	20	ND	ND		810	No	No	
Carbon tetrachloride	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
Chlorobenzene	0/6	20	20	ND	ND		100	No	No	
Chloroethane	0/6	20	20	ND	ND		21000	No	No	
Chlorotorm	0/6	20	20	ND ND	ND ND		80	No	No	
	0/6	20	20	ND	ND		190	NO No	NO	
cis-1,2-Dichloroethene	0/6	20	20	ND ND	ND		70 Nov	NO	NO	
Cis-1,3-Dichloropropene	0/6	20	20				1400	No	NO	
Dibromochloromothano	0/0	200	200				80	No	No	
Dishlorodifluoromethano	0/0	20	20				200	No	No	
Ethylbenzene	0/6	20	20		ND		700	No	No	
Isonronvibenzene	0/6	20	20	ND	ND		450	No	No	
m n-Xvlene	1/6	40	40	18.1	18.1	SS-15 (0-2')	Nav	No	No	
Methyl acetate	0/6	40	40	ND	ND		5300	No	No	
Methyl tert-butyl ether (MTBE)	0/6	20	20	ND	ND		14	No	No	
Methylcyclohexane	0/6	20	20	ND	ND		Nav	No	No	
Methylene chloride	0/6	100	100	ND	ND		5	Yes	No	Reporting limit exceeds gro
Naphthalene	0/6	100	100	ND	ND		0.12	Yes	No	Reporting limit exceeds gro
o-Xylene	1/6	20	20	9.0 J	9.0 J	SS-15 (0-2')	Nav	No	No	
Styrene	0/6	20	20	ND	ND		100	No	No	
Tetrachloroethene	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
Toluene	1/6	20	20	16 J	16 J	SS-15 (0-2')	1000	No	No	
trans-1,2-Dichloroethene	0/6	20	20	ND	ND		100	No	No	
trans-1,3-Dichloropropene	0/6	20	20	ND	ND		Nav	No	No	
Trichloroethene	0/6	20	20	ND	ND		5	Yes	No	Reporting limit exceeds gro
Trichlorofluoromethane	0/6	20	20	ND	ND		1100	No	No	
Vinyl chloride	0/6	20	20	ND	ND		2	Yes	No	Reporting limit exceeds gro
Xylenes, Total	1/6	60	60	27 J	27 J	SS-15 (0-2')	10000	No	No	

Table 3-3 Selection of Direct Contact Constituents of Concern for Groundwater from SPLP Samples Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Comment
aundwater standard, but constituent not detected in any complex
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
, , , , , , , , , , , , , , , , , , , ,
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (μg/Kg)	Minimum Detected Concentration (μg/Kg)	Maximum Detected Concentration (μg/Kg)	Sample with Maximum Detect	Groundwater DeMinimis Standard (μg/L) ^[2]	Reporting Limit Exceeds Res. Criteria?	Direct Contact Contaminant of Concern (COC)	
						PAHs				
1-Methylnaphthalene	0/6	0.34	0.68	ND	ND		1.1	No	No	
2-Chloronaphthalene	0/4	0.34	0.68	ND	ND		330	No	No	
2-Methylnaphthalene	0/6	0.34	0.68	ND	ND		36	No	No	
Acenaphthene	0/6	0.34	0.68	ND	ND		240	No	No	
Acenaphthylene	0/6	0.34	0.68	ND	ND		240	No	No	
Anthracene	0/6	0.34	0.68	ND	ND		1800	No	No	
Benzo(a)anthracene	0/6	0.34	0.68	ND	ND		0.03	Yes	No	Reporting limit exceeds gro
Benzo(a)pyrene	0/6	0.34	0.68	ND	ND		0.2	Yes	No	Reporting limit exceeds gro
Benzo(b)fluoranthene	0/6	0.34	0.68	ND	ND		0.25	Yes	No	Reporting limit exceeds gro
Benzo(g,h,i)perylene	0/6	0.34	0.68	ND	ND		600	No	No	
Benzo(k)fluoranthene	0/6	0.34	0.68	ND	ND		2.5	No	No	
Chrysene	0/6	0.34	0.68	ND	ND		25	No	No	
Dibenzo(a,h)anthracene	0/6	0.34	0.68	ND	ND		0.025	Yes	No	Reporting limit exceeds gro
Fluoranthene	1/6	0.34	0.68	0.084 J	0.084 J	SS-17 (2-4')	800	No	No	
Fluorene	0/6	0.34	0.68	ND	ND		150	No	No	
Indeno(1,2,3-cd)pyrene	0/6	0.34	0.68	ND	ND		0.25	Yes	No	Reporting limit exceeds gro
Naphthalene	0/6	0.34	0.68	ND	ND		0.12	Yes	No	Reporting limit exceeds gro
Phenanthrene	3/6	0.68	0.68	0.080 J	0.29 J	SS-17 (2-4')	1700	No	No	
Pyrene	0/6	0.34	0.68	ND	ND		79	No	No	
						Herbicides				
2,4-Dichlorophenoxyacetic acid (2,4-D)	0/6	1.0	1.0	ND	ND		70	No	No	
4-(2,4-Dichlorophenoxy)butyric acid (2,4-DB)	0/6	1.0	1.0	ND	ND		450	No	No	
Dalapon	0/6	1.0	1.0	ND	ND		200	No	No	
Dicamba	0/6	0.20	0.20	ND	ND		570	No	No	
Dichloroprop	0/6	0.20	0.20	ND	ND		Nav	No	No	
Dinoseb	0/6	1.0	1.0	ND	ND		7	No	No	
2-Methyl-4-chlorophenoxyacetic acid (MCPA)	0/6	100	100	ND	ND		7.5	Yes	No	Reporting limit exceeds gro
2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP)	0/6	100	100	ND	ND		Nav	No	No	
Pentachlorophenol	0/6	0.20	0.20	ND	ND		1	No	No	
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	0/6	0.20	0.20	ND	ND		160	No	No	
2-(2,4,5-Trichlorophenoxy) propionic acid (2,4,5-TP)	0/6	0.20	0.20	ND	ND		50	No	No	
						Metals ^[3]				
Mercury	0/6	0.00020	0.00020	ND	ND		0.002	No	No	
Arsenic	0/6	0.0050	0.0050	ND	ND		0.01	No	No	
Barium	3/6	0.0050	0.0050	0.0043 J	0.036	FD-1 (Duplicate of SS-15 0-2')	2	No	No	
Cadmium	0/6	0.010	0.010	ND	ND		0.005	Yes	No	Reporting limit exceeds gro
Chromium ^[4]	2/6	0.0050	0.0050	0.00098 J	0.0041 J	SS-15 (0-2')	22	No	No	
Lead	2/6	0.0050	0.0050	0.0014 J	0.0019 J		0.015	No	No	
Selenium	0/6	0.010	0.010	ND	ND		0.05	No	No	
Silver	0/6	0.0050	0.0050	ND	ND		0.094	No	No	

Table 3-3 Selection of Direct Contact Constituents of Concern for Groundwater from SPLP Samples Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Comment
aundwater standard, but constituent not detected in any complex
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
oundwater standard, but constituent not detected in any samples.
bundwater standard, but constituent not detected in any samples.
aundwater standard, but constituent not detected in any complex
oundwater standard, but constituent not detected in any samples.

Constituent of Potential Concern (COPC)	Frequency of Detection (FOD) ^[1]	Minimum Reporting Limit (μg/Kg)	Maximum Reporting Limit (µg/Kg)	Minimum Detected Concentration (µg/Kg)	Maximum Detected Concentration (µg/Kg)	Sample with Maximum Detect	Groundwater DeMinimis Standard (µg/L) ^[2]	Reporting Limit Exceeds Res. Criteria?	Direct Contact Contaminant of Concern (COC)	Comment
						PCBs				
Aroclor-1016	0/6	0.40	0.80	ND	ND		0.22	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1221	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1232	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1242	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1248	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1254	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.
Aroclor-1260	0/6	0.40	0.80	ND	ND		0.0079	Yes	No	Reporting limit exceeds groundwater standard, but constituent not detected in any samples.

Notes:

Nav - No screening value available

ND - Constituent not detected

"---" - not applicable

J - analyte is present at an estimated concentration between the MDL and Report Limit

[1] For those SPLP samples that had a duplicate sample collected, the higher of the two concentrations from the original and duplicate sample were used to select the maximum detected concentration. In addition, the original and duplicate sample detected results were counted as one sample for purposes of frequency of detection.

[2] WVDEP groundwater de minimis standard (November 30, 2023)

[3] The analytical results and screening values for metals are in mg/kg rather than ug/kg.

[4] Trivalent chromium de minimis standards utilized to screen total chromium analytical results due to no source of hexavalent chromium.

Table 3-3 Selection of Direct Contact Constituents of Concern for Groundwater from SPLP Samples Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Table 3-4 Summary of Direct Contact Constituents of Concern Human Health and Ecological Risk Assessment Report Former Hinton Ice House Hinton, West Virginia

		Soils	
Constituents of Concern (COC)	Surface Soil ^[1]	Subsurface Soil ^[1]	SPLP ^[2]
	0-2 ft-bgs	>2 ft-bgs	0-10 ft-bgs
Polycyclic Aromatic Hydrocarbon	s (PAHs)	•	•
Benzo(a)anthracene	Res		
Benzo(a)pyrene	Res, Ind	Res	
Benzo(b)fluoranthene	Res		
Benzo(k)fluoranthene	Res		
Dibenzo(a,h)anthracene	Res		
Indeno(1,2,3-cd)pyrene	Res		
Metals			
Antimony	Res		
Arsenic	Res, Ind	Res	
Iron	Res		
Lead	Res, Ind	Res	
Polychlorinated Biphenyls (PCBs)			
Aroclor-1254	Res		
Mataa			

Notes:

"---" indicates constituent was not retained as a COC for the identified medium

SPLP - synthetic precipitation leaching procedure

Res - indicates an exceedance of the WVDEP soil de minimis standard, last updated November 2023

Ind - indicates an exceedance of the WVDEP soil de minimis standard, last updated November 2023

See Table 2-4 for a list of sample locations used to select direct contact COC.

[1] Any site-related constituent in soil samples located on Site that exceeded a WVDEP residential or industrial soil *de minimis* standard was retained as a direct contact COC.

[2] Any site-related constituent in SPLP samples located on Site that exceeded a WVDEP groundwater *de minimis* standard was retained as a direct contact COC.

Table 4-1 Potential Constituent Migration Routes, Receptors, and Exposure Pathways Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Migration Route	Analysis							Receptors			
										On-Site			
Source	Transport Transport		Exposure Pathway	Current	Future	Future	Future	Current	Future	Future	Future		
		to Media to Receptor		to Receptor		Outdoor	Worker	Maintenance Worker	Indoor Worker	Trespasser	Construction Worker	Utility Worker	Recreational User
					Maximum Excavation Depth by Scenario	2 ft-	bgs	2 ft-bgs	NA	NA	10 ft-bgs	4 ft-bgs	2 ft-bgs
					Surface Soil:								
					Incidental Ingestion	Qual ^[1]	Quant	Quant		Quant	Quant ^[2]	Quant [2]	Quant
			Surface Soil		Dermal Contact	Qual ^[1]	Quant	Quant		Quant	Quant [2]	Quant ^[2]	Quant
		→ Direct Release	┥╷┝	Particulate Emissions	Inhalation of Particulates (Outdoor/Trench Air)	Qual ^[1]	Quant	Quant		Quant	Quant [2]	Quant [2]	Quant
					Inhalation of Volatiles (Indoor Air via Vapor Intrusion)				NR				
				Volatilization	Inhalation of Volatiles (Outdoor/Trench Air)	NR	NR	NR		NR	NR	NR	Quant
Facility Operations	PAHs, Metals, PCBs	Leaching			Subsurface Soil:								
					Incidental Ingestion						NR	NR	
			Subsurface	`	Dermal Contact						NR	NR	
		Direct Release	→	Particulate Emissions	Inhalation of Particulates (Outdoor/Trench Air)						NR	NR	
					Inhalation of Volatiles (Indoor Air via Vapor Intrusion)				NR				
			L	Volatilization	Inhalation of Volatiles (Outdoor/Trench Air)	NR	NR	NR		NR	NR	NR	NR

Notes:

Quant - exposure pathway is complete and was retained for quantitative risk analysis for that medium for the receptor.

Qual - exposure pathway was retained qualitatively, but was not quantitatively evaluated.

NR - indicates that the exposure pathway is not retained for that medium for the receptor.

ft-bgs - feet below ground surface

"---" - indicates that the exposure pathway is not applicable to the receptor.

NA - not applicable

[1] The quantitative evaluation of the future outdoor worker scenario will be protective of the current outdoor worker because the exposure parameters for the future outdoor worker are more conservative than the current outdoor worker.

[2] One quantiative risk calculation will be completed for a construction worker and utility worker because direct contact COC retained based on industrial soil *de minimis* standard exceedances were only identified in surface soil. Thus, the exposure scenarios for these receptors are the same.

Table 5-1 Source Concentrations Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

	Source Co by I	ncentrations Media		Source Co	oncentrations by	Receptor and Ex	posure Pathway		
					(On-Site			
Constituent of Concern (COC)	On	-Site	Future Recre	ational User ^[2]	Future Mainte Future Outdoo Current Tr	nance Worker, or Worker, and espasser ^[3]	Future Construction/Utility Worker ^[4]		
	Surfac	ce Soil ^[1] ft bgs	Incidental Ingestion and Dermal Contact	Inhalation of Volatiles and Particulates (Ambient Air)	Incidental Ingestion and Dermal Contact	Inhalation of Particulates (Ambient Air)	Incidental Ingestion and Dermal Contact	Inhalation of Particulates (Trench Air)	
	m	g/kg	mg/kg	µg/kg	mg/kg	mg/kg µg/kg		µg/kg	
Polycyclic Aromatic Hydro	carbons (PA	AHs)				•			
Benzo(a)anthracene	38.7	UCL	38.7	38,662					
Benzo(a)pyrene	33.2	UCL	33.2	33,232	33.2	33,232	33.2	33,232	
Benzo(b)fluoranthene	43.4	UCL	43.4	43,441					
Benzo(k)fluoranthene	5.7	UCL	5.7	5,743					
Dibenzo(a,h)anthracene	1.5	UCL	1.5	1,516					
Indeno(1,2,3-cd)pyrene	6.2	UCL	6.2	6,233					
Metals									
Antimony	28.9	UCL	28.9	28,920					
Arsenic	188.6	UCL	188.6	188,600	188.6	188,600	188.6	188,600	
Iron	59,016	UCL	59,016	59,016,000					
Lead	650.8	Mean							
Polychlorinated Biphenyls	(PCBs)								
Aroclor-1254	0.35	Max	0.35	350					

Notes:

mg/kg - milligram per kilogramUCL - upper confidence level of the mean concentrationμg/kg - microgram per kilogramMax - maximum concentrationft bgs - feet below ground surfaceMean - arithmetic mean

"---" - indicates constituent was not retained as a COC for the receptor

[1] ProUCL 5.1 was used to derive source concentrations for surface soil 0-2 ft bgs. The maximum concentration was conservatively used as the source concentration for those subsets with fewer than 10 samples/detections. For lead, the mean was used in accordance with WVDEP Voluntary Remediation Program (VRP) guidance (WVDEP 2023).

[2] The future recreational user may be exposed to COC in surface soil via incidental ingestion of soil, dermal contact with soil, and inhalation of particulates in ambient air from soil. Therefore, the source concentrations for surface soil (0-2 ft bgs) were used to evaluate soil exposure pathways for this receptor for those COC that exceeded the residential soil *de minimis* standards.

[3] The future maintenance worker, future outdoor worker, and current trespasser may be exposed to COC in surface soil via incidental ingestion of soil, dermal contact with soil, and inhalation of particulates in ambient air from soil. Therefore, the source concentrations for surface soil (0-2 ft bgs) were used to evaluate soil exposure pathways for these receptors for those COC that exceeded the industrial soil *de minimis* standards.

[4] The future construction/utility worker may be exposed to COC in surface soil via incidental ingestion of soil, dermal contact with soil, and inhalation of particulates in ambient air from soil. Therefore, the source concentrations for surface soil (0-2 ft bgs) were used to evaluate soil exposure pathways for these receptors for those COC that exceeded the industrial soil *de minimis* standards.

Parameter		,	/alue	Units	Comments/References
Time spent ou	utdoors				
T _{out} , ₁₋₂	Total time spent outdoors (1-2 years)	=	2	hours/day	IEUBK default, 1-2 years
T out, 2-3	Total time spent outdoors (2-3 years)	=	3	hours/day	IEUBK default, 2-3 years
T out, 3-7	Total time spent outdoors (3-7 years)	=	4	hours/day	IEUBK default, 3-7 years
T _{site}	Time spent at site	=	3	hours/day	default assumption for a recreational user at a community pa
Lead Exposur	e Parameters				
f _{site} , ₁₋₂	Fraction of daily outdoor time spent at site on days site visited (1-2 years)	=	1	unitless	calculated
f _{yard, 1-2}	Fraction of daily outdoor time spent at home on days site visited (1-2 years)	=	0	unitless	calculated
f _{site} , ₂₋₃	Fraction of daily outdoor time spent at site on days site visited (2-3 years)	=	1	unitless	calculated
f _{yard, 2-3}	Fraction of daily outdoor time spent at home on days site visited (2-3 years)	=	0	unitless	calculated
f _{site} , ₃₋₇	Fraction of daily outdoor time spent at site on days site visited (3-7 years)	=	0.75	unitless	calculated
f _{yard,3-7}	Fraction of daily outdoor time spent at home on days site visited (3-7 years)	=	0.25	unitless	calculated
EF site	Exposure frequency expressed as fraction of the days/week child visits site during exposure period	=	0.29	unitless	based on 2 site visits per week (professional judgement)
EF _{yard}	Exposure frequency expressed as fraction of the days/week child does not visit site during exposure period	=	0.71	unitless	calculated
Lead Concent	rations				
PbS yard	Average soil lead concentration at home	=	38	mg/kg	90th percentile background soil lead concentration in West
PbS _w	Weighted soil lead concentration	=	100	mg/kg	May 2024 USEPA residential soil regional screening level fo
Lead Screenir	ng Values				
PbS site, 1-2	Target soil lead concentration at site (1-2 years)	=	255	mg/kg	calculated
PbS site, 2-3	Target soil lead concentration at site (2-3 years)	=	255	mg/kg	calculated
PbS site, 3-7	Target soil lead concentration at site (3-7 years)	=	327	mg/kg	calculated
PbS site,target	Target soil lead concentration at site	=	255	mg/kg	calculated

Table 5-2 Calculation of Site-Specific Lead Cleanup Level for a Future Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Equations

oark (WVDEP 2023a)

$$f_{site} = \frac{T_{site}}{T_{out}}$$

$$f_{yard} = 1 - f_{site}$$

$$EF_{yard} = 1 - EF_{site}$$

$$PbS_{site} = \frac{PbS_w - PbS_{yard} \times \left[\left(f_{yard} \times EF_{site} \right) + EF_{yard} \right]}{EF_{site} \times f_{site}}$$

Virginia (WVDEP 2023a) for multiple sources of lead

Table 6-1 Chemical Properties Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Mole	cular Weight	Me	lting Point	Boi	Boiling Point		
		Value	Source	Value	Source	Value	Source		
Chemical	CAS No.	(g/mol)		(°C)		(°C)			
Polycyclic Aromatic Hydrocarbons	s (PAHs)								
Benzo(a)anthracene	56-55-3	2.3E+02	RAIS	8.4E+01	RAIS	4.4E+02	RAIS		
Benzo(a)pyrene	50-32-8	2.5E+02	RAIS	1.8E+02	RAIS	5.0E+02	RAIS		
Benzo(b)fluoranthene	205-99-2	2.5E+02	RAIS	1.7E+02	RAIS	4.4E+02	RAIS		
Benzo(k)fluoranthene	207-08-9	2.5E+02	RAIS	2.2E+02	RAIS	4.8E+02	RAIS		
Dibenz(a,h)anthracene	53-70-3	2.8E+02	RAIS	2.7E+02	RAIS	5.2E+02	RAIS		
Indeno[1,2,3-cd]pyrene	193-39-5	2.8E+02	RAIS	1.6E+02	RAIS	5.4E+02	RAIS		
Metals									
Antimony	7440-36-0	1.2E+02	RAIS	6.3E+02	RAIS	1.6E+03	RAIS		
Arsenic	7440-38-2	7.5E+01	RAIS	2.7E+02	RAIS	6.2E+02	RAIS		
Iron	7439-89-6	5.6E+01	RAIS	1.5E+03	RAIS	3.0E+03	RAIS		
Polychlorinated Biphenyls (PCBs)									
Aroclor-1254	11097-69-1	3.3E+02	RAIS	1.3E+02	RAIS	3.8E+02	RAIS		

Notes:

g/mol - grams per mole

°C - degrees Celsius

Sources:

		Wate	r Solubility	Vapo	Vapor Pressure Log of Octanol-Water Part.		Water Part. Coef. (Log K _{ow})	Octanol-Wat	er Part. Coef. (K _{ow})
		Value	Source	Value	Source	Value	Source	Value	Source
Chemical	CAS No.	(mg/L)		(mm Hg)		(L/L)		(L/L)	
Polycyclic Aromatic Hydrocarbons	s (PAHs)								
Benzo(a)anthracene	56-55-3	9.4E-03	RAIS	2.1E-07	RAIS	5.8E+00	RAIS	5.8E+05	RAIS
Benzo(a)pyrene	50-32-8	1.6E-03	RAIS	5.5E-09	RAIS	6.1E+00	RAIS	1.3E+06	RAIS
Benzo(b)fluoranthene	205-99-2	1.5E-03	RAIS	5.0E-07	RAIS	5.8E+00	RAIS	6.0E+05	RAIS
Benzo(k)fluoranthene	207-08-9	8.0E-04	RAIS	9.7E-10	RAIS	6.1E+00	RAIS	1.3E+06	RAIS
Dibenz(a,h)anthracene	53-70-3	2.5E-03	RAIS	9.6E-10	RAIS	6.8E+00	RAIS	5.6E+06	RAIS
Indeno[1,2,3-cd]pyrene	193-39-5	1.9E-04	RAIS	1.3E-10	RAIS	6.7E+00	RAIS	5.0E+06	RAIS
Metals									
Antimony	7440-36-0	N/A		0.0E+00	RAIS	N/A		N/A	
Arsenic	7440-38-2	N/A		0.0E+00	RAIS	N/A		N/A	
Iron	7439-89-6	N/A		0.0E+00	RAIS	N/A		N/A	
Polychlorinated Biphenyls (PCBs)									
Aroclor-1254	11097-69-1	4.3E-02	RAIS	7.7E-05	RAIS	6.5E+00	RAIS	3.2E+06	RAIS

Notes:

mg/L - milligrams per liter mm Hg - millimeters of mercury

L/L - liters per liter N/A - not applicable

Sources:

	Organic Carbon Part. C		Part. Coef. (K _{oc})	Soil-Water Partitio	on Coefficient (K _d)	Henry's Lav	v Constant	Unitless Henr	y's Law Constant
		Value	Source	Value	Source	Value	Source	Value	Source
Chemical	CAS No.	(mg/Kg / mg/L)		(cm ³ /g) or (L/kg)		(atm-m³/mol)		(unitless)	
Polycyclic Aromatic Hydrocarbor	ns (PAHs)								
Benzo(a)anthracene	56-55-3	1.8E+05	RAIS		Calculated	1.2E-05	RAIS	4.9E-04	RAIS
Benzo(a)pyrene	50-32-8	5.9E+05	RAIS		Calculated	4.6E-07	RAIS	1.9E-05	RAIS
Benzo(b)fluoranthene	205-99-2	6.0E+05	RAIS		Calculated	6.6E-07	RAIS	2.7E-05	RAIS
Benzo(k)fluoranthene	207-08-9	5.9E+05	RAIS		Calculated	5.8E-07	RAIS	2.4E-05	RAIS
Dibenz(a,h)anthracene	53-70-3	1.9E+06	RAIS		Calculated	1.4E-07	RAIS	5.8E-06	RAIS
Indeno[1,2,3-cd]pyrene	193-39-5	2.0E+06	RAIS		Calculated	3.5E-07	RAIS	1.4E-05	RAIS
Metals									
Antimony	7440-36-0	N/A		4.5E+01	RAIS	N/A		N/A	
Arsenic	7440-38-2	N/A		2.9E+01	RAIS	N/A		N/A	
Iron	7439-89-6	N/A		2.5E+01	RAIS	N/A		N/A	
Polychlorinated Biphenyls (PCBs)								
Aroclor-1254	11097-69-1	1.3E+05	RAIS			2.8E-04	RAIS	1.2E-02	RAIS

Notes:

mg/kg / mg/L - milligrams per kilogram per milligram per liter atm-m³/mol - atmosphere cubic meter per mole N/A - not applicable Sources: cm³/g - cubic centimeters per gram L/kg - liters per kilogram Calculated - calculated from organic carbon partition coefficient (Koc) and fraction of organic carbon in soil (foc) in the applicable volailization models

Table 6-1 Chemical Properties Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		v	apor Phase Diffusivity	Water	Phase Diffusivity
		Value	Source	Value	Source
Chemical	CAS No.	(cm²/s)		(cm²/s)	
Polycyclic Aromatic Hydrocarbons	s (PAHs)				
Benzo(a)anthracene	56-55-3	2.6E-02	RAIS	6.7E-06	RAIS
Benzo(a)pyrene	50-32-8	2.5E-02	RAIS	6.6E-06	RAIS
Benzo(b)fluoranthene	205-99-2	2.5E-02	RAIS	6.4E-06	RAIS
Benzo(k)fluoranthene	207-08-9	2.5E-02	RAIS	6.4E-06	RAIS
Dibenz(a,h)anthracene	53-70-3	2.4E-02	RAIS	6.0E-06	RAIS
Indeno[1,2,3-cd]pyrene	193-39-5	2.5E-02	RAIS	6.4E-06	RAIS
Metals					
Antimony	7440-36-0	N/A		N/A	
Arsenic	7440-38-2	N/A		N/A	
Iron	7439-89-6	N/A		N/A	
Polychlorinated Biphenyls (PCBs)					
Aroclor-1254	11097-69-1	2.4E-02	RAIS	6.1E-06	RAIS

Notes:

cm²/s - centimeters squared per second

N/A - not applicable

Sources:

Table 6-2 Cancer Slope Factors and Inhalation Unit Risks Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

			Oral	Oral CSF		Dermal C	SF		
		Mutagenic?	CSI	Fo	GIAB	S	CSF _D	101	κ.
Chemical	CAS No.	(Yes/No)	(mg/kg-day) ⁻¹	Source	(unitless)	Source	(mg/kg-day) ⁻¹	(ug/m³)⁻¹	Source
Polycyclic Aromatic Hydrocarbons	(PAHs)								
Benzo(a)anthracene	56-55-3	Yes	1.0E-01	USEPA 2024	1	RAGS-E	1.0E-01	6.0E-05	USEPA 2024
Benzo(a)pyrene	50-32-8	Yes	1.0E+00	IRIS	1	RAGS-E	1.0E+00	6.0E-04	IRIS
Benzo(b)fluoranthene	205-99-2	Yes	1.0E-01	USEPA 2024	1	RAGS-E	1.0E-01	6.0E-05	USEPA 2024
Benzo(k)fluoranthene	207-08-9	Yes	1.0E-02	USEPA 2024	1	RAGS-E	1.0E-02	6.0E-06	USEPA 2024
Dibenz(a,h)anthracene	53-70-3	Yes	1.0E+00	USEPA 2024	1	RAGS-E	1.0E+00	6.0E-04	USEPA 2024
Indeno[1,2,3-cd]pyrene	193-39-5	Yes	1.0E-01	USEPA 2024	1	RAGS-E	1.0E-01	6.0E-05	USEPA 2024
Metals									
Antimony	7440-36-0	No							
Arsenic	7440-38-2	No	1.5E+00	IRIS	1	RAGS-E	1.5E+00	4.3E-03	IRIS
Iron	7439-89-6	No							
Polychlorinated Biphenyls (PCBs)									
Aroclor-1254	11097-69-1	No	2.0E+00	USEPA 2024	1	RAGS-E	2.0E+00	5.7E-04	USEPA 2024

Notes:

CSF - Cancer Slope Factor IUR - Inhalation Unit Risk $(mg/kg-day)^{-1}$ - per milligram per kilogram per day $(\mu g/m^3)^{-1}$ - per microgram per cubic meter

$$CSF_D = \frac{CSF_O}{GIABS}$$

GIABS - fraction of constituent absorbed in gastrointestinal tract

Sources:

IRIS - Integrated Risk Information System

RAGS-E - Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)

USEPA 2024 - United States Environmental Protection Agency, Regional Screening Level Tables, May 2024

Table 6-3 Chronic Reference Doses and Reference Concentrations Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Ora	l RfD		Dermal R	fD	Inhalation RfC		
		Rf	D _o	GIABS		RfD _D	l	RfC	
Chemical	CAS No.	(mg/kg-day)	Source	(unitless)	Source	(mg/kg-day)	(mg/m³)	Source	
Polycyclic Aromatic Hydrocarbons (P	AHs)								
Benzo(a)anthracene	56-55-3								
Benzo(a)pyrene	50-32-8	3.0E-04	IRIS	1	RAGS-E	3.0E-04	2.0E-06	IRIS	
Benzo(b)fluoranthene	205-99-2								
Benzo(k)fluoranthene	207-08-9								
Dibenz(a,h)anthracene	53-70-3								
Indeno[1,2,3-cd]pyrene	193-39-5								
Metals									
Antimony	7440-36-0	4.0E-04	IRIS	0.15	RAGS-E	6.0E-05	3.0E-04	ATSDR	
Arsenic	7440-38-2	3.0E-04	IRIS	1	RAGS-E	3.0E-04	1.5E-05	CalEPA	
Iron	7439-89-6	7.0E-01	PPRTV	1	RAGS-E	7.0E-01			
Polychlorinated Biphenyls (PCBs)									
Aroclor-1254	11097-69-1	2.0E-05	IRIS	1	RAGS-E	2.0E-05			

Notes:

RfD - Reference Dose mg/k

mg/kg-day - milligram per kilogram per day mg/m³ - milligram per cubic meter

$$RfD_D = RfD_O * GIABS$$

GIABS - fraction of constituent absorbed in gastrointestinal tract

Sources:

ATSDR - Intermediate Minimal Risk Level (MRL) from the Agency for Toxic Substances and Disease Registry

CalEPA - California EPA Cancer Potency Factor

IRIS - Integrated Risk Information System

RfC - Reference Concentration

PPRTV - EPA Provisional Peer Reviewed Toxicity Value

RAGS-E - Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)

Table 6-4 Subchronic Reference Doses and Reference Concentrations Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		01	Oral RfD		Dermal RfD			Inhalation RfC		
			RfD _o	GIABS		RfD _D	RfC			
Chemical	CAS No.	(mg/kg-day)	Source	(unitless)	Source	(mg/kg-day)	(mg/m³)	Source		
Polycyclic Aromatic Hydrocarbons	(PAHs)									
Benzo(a)anthracene	56-55-3									
Benzo(a)pyrene	50-32-8	3.0E-04	chronic (IRIS)	1	RAGS-E	3.0E-04	2.0E-06	chronic (IRIS)		
Benzo(b)fluoranthene	205-99-2									
Benzo(k)fluoranthene	207-08-9									
Dibenz(a,h)anthracene	53-70-3									
Indeno[1,2,3-cd]pyrene	193-39-5									
Metals										
Antimony	7440-36-0	4.0E-04	PPRTV	0.15	RAGS-E	6.0E-05	1.0E-03	ATSDR		
Arsenic	7440-38-2	3.0E-04	chronic (IRIS)	1	RAGS-E	3.0E-04	1.5E-05	chronic (CalEPA)		
Iron	7439-89-6	7.0E-01	PPRTV	1	RAGS-E	7.0E-01				
Polychlorinated Biphenyls (PCBs)										
Aroclor-1254	11097-69-1	3.0E-05	ATSDR	1	RAGS-E	3.0E-05				

Notes:

RfD - Reference Dose mg/kg-day - milligram per kilogram per day

 $RfD_D = RfD_O * GIABS$

RfC - Reference Concentration mg/m³ - milligram per cubic meter

GIABS - fraction of constituent absorbed in gastrointestinal tract

Sources:

ATSDR - Intermediate Minimal Risk Level (MRL) from the Agency for Toxic Substances and Disease Registry

CalEPA - California EPA Cancer Potency Factor

chronic - chronic value used as subchronic value

IRIS - Integrated Risk Information System

PPRTV - EPA Provisional Peer Reviewed Toxicity Value

RAGS-E - Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)

Table 6-5 Cancer Slope Factors and Inhalation Unit Risks - Tumor Type or Target Organ Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Chamical		Oral Tumor Type or Target Organ	Inhalation Tumor Type or Target Organ
Debravelie Aremetic Undreserb	CAS NO.		
Polycyclic Aromatic Hydrocarb	ons (PAHS)		
Benzo(a)anthracene	56-55-3	probable human carcinogen - based on sufficient evidence of carcinogenicity in animals	probable human carcinogen - based on sufficient evidence of carcinogenicity in animals
Benzo(a)pyrene	50-32-8	forestomach, esophagus, tongue, and larynx tumors; gastrointestinal	squamous cell neoplasia in the larynx, pharynx, trachea, nasal cavity, esophagus, and forestomach; gastrointestinal and respiratory
Denze (h)fluerenthene	205 00 2	probable human carcinogen - based on sufficient evidence of	probable human carcinogen - based on sufficient evidence of
Benzo(b)nuoranthene	205-99-2	carcinogenicity in animals	carcinogenicity in animals
Panza (k) fluoranthana	207.09.0	probable human carcinogen - based on sufficient evidence of	probable human carcinogen - based on sufficient evidence of
Benzo(k)nuorantnene	207-08-9	carcinogenicity in animals	carcinogenicity in animals
Dihana(a h)anthracana	F2 70 2	probable human carcinogen - based on sufficient evidence of	probable human carcinogen - based on sufficient evidence of
Diberiz(a,ii)antinacene	55-70-5	carcinogenicity in animals	carcinogenicity in animals
Indono[1,2,2,cd]pyropo	102 20 E	probable human carcinogen - based on sufficient evidence of	probable human carcinogen - based on sufficient evidence of
indeno[1,2,3-cd]pyrene	192-29-2	carcinogenicity in animals	carcinogenicity in animals
Metals			
Antimony	7440-36-0		
Arsenic	7440-38-2	skin cancer	lung cancer
Iron	7439-89-6		
Polychlorinated Biphenyls (PC	3s)		
A	11007 60 1	liver hepatocellular adenomas, carcinomas, cholangiomas, or	liver hepatocellular adenomas, carcinomas, cholangiomas, or
AI UCIUI-1234	11097-09-1	cholangiocarcinomas; liver	cholangiocarcinomas; liver

Notes:

Sources used include:

IRIS - Integrated Risk Information System (http://www.epa.gov/IRIS/)

RAIS - Risk Assessment Information System website (http://www.rais.ornl.gov) (Accessed on March 28, 2024)

California Environmental Protection Agency (http://www.oehha.ca/library/chemical-databases)

Table 6-6 Chronic Reference Doses and Reference Concentrations - Critical Effect or Target Organ Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Chemical	CAS No.	Oral Critical Effect	Target Organ System	Inhalation Critical Effect	Target Organ System
Polycyclic Aromatic Hydrocarbo	ns (PAHs)				
Benzo(a)anthracene	56-55-3				
Benzo(a)pyrene	50-32-8	neurobehavioral changes	developmental system	decreased embryo/fetal survival	developmental system
Benzo(b)fluoranthene	205-99-2				
Benzo(k)fluoranthene	207-08-9				
Dibenz(a,h)anthracene	53-70-3				
Indeno[1,2,3-cd]pyrene	193-39-5				
Metals					
Antimony	7440-36-0	longevity, blood glucose, and cholesterol	whole body	increase in alveolar/intra-alveolar macrophages; increase in chronic interstitial inflammation; decreases in lung clearance	respiratory system
Arsenic	7440-38-2	hyperpigmentation, keratosis, possible vascular complications	skin and hematological system	respiratory irritation	respiratory system
Iron	7439-89-6	adverse gastrointestinal effects	gastrointestinal tract		
Polychlorinated Biphenyls (PCBs	5)				
Aroclor-1254	11097-69-1	ocular exudate, inflamed and prominent Meibomian glands, distorted growth of finger and toe nails; decreased antibody (IgG and IgM) response to sheep erythrocytes	whole body		

Notes:

Sources used include:

IRIS - Integrated Risk Information System (http://www.epa.gov/IRIS/)

RAIS - Risk Assessment Information System website (http://www.rais.ornl.gov) (Accessed on March 28, 2024)

California Environmental Protection Agency (http://www.oehha.ca/library/chemical-databases)

Table 6-7 Subchronic Reference Doses and Reference Concentrations - Critical Effect or Target Organ Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Oral Critical Effect	Target Organ System	Inhalation Critical Effect or Target Organ	Target Organ
Chemical	CAS No.				System
Polycyclic Aromatic Hydrocarbor	ns (PAHs)				
Benzo(a)anthracene	56-55-3				
Benzo(a)pyrene	50-32-8	neurobehavioral changes ^[1]	developmental system [1]	decreased embryo/fetal survival [1]	developmental system [1]
Benzo(b)fluoranthene	205-99-2				
Benzo(k)fluoranthene	207-08-9				
Dibenz(a,h)anthracene	53-70-3				
Indeno[1,2,3-cd]pyrene	193-39-5				
Metals					
Antimony	7440-36-0	reduced lifespan and serum chemistry changes	whole body	squamous metaplasia in epiglottis epithelium; increases in relative lung weight	respiratory system
Arsenic	7440-38-2	hyperpigmentation, keratosis, possible vascular complications ^[1]	skin and hematological system ^[1]	respiratory irritation ^[1]	respiratory system ^[1]
Iron	7439-89-6	adverse gastrointestinal effects	gastrointestinal tract		
Polychlorinated Biphenyls (PCBs)				
Aroclor-1254	11097-69-1	decreased behavioral performance	nervous system		

Notes:

Sources used include:

IRIS - Integrated Risk Information System (http://www.epa.gov/IRIS/)

RAIS - Risk Assessment Information System website (https://rais.ornl.gov) (Accessed on March 28, 2024)

California Environmental Protection Agency (http://www.oehha.ca/library/chemical-databases)

[1] Indicates the chronic critical effect and/or target organ because a chronic RfD or RfC was used to represent subchronic exposure.

Table 6-8 Absorption Adjustment Factors for COC in Soil Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Absorption Ad	justment Factor for	Absorption Adjustm	ent Factor for
		Ingestion of	of Soil (AAF _{ing-s})	Dermal Contact with	Soil (AAF _{derm-s})
Chemical	CAS No.	Value (unitless)	Basis	Value (unitless)	Basis
Polycyclic Aromatic Hydrocarbo	ns (PAHs)				
Benzo(a)anthracene	56-55-3	1	conservative assumption	0.13	RAGS-E
Benzo(a)pyrene	50-32-8	1	conservative assumption	0.13	RAGS-E
Benzo(b)fluoranthene	205-99-2	1	conservative assumption	0.13	RAGS-E
Benzo(k)fluoranthene	207-08-9	1	conservative assumption	0.13	RAGS-E
Dibenz(a,h)anthracene	53-70-3	1	conservative assumption	0.13	RAGS-E
Indeno[1,2,3-cd]pyrene	193-39-5	1	conservative assumption	0.13	RAGS-E
Metals					
Antimony	7440-36-0	1	conservative assumption	[1]	RAGS-E
Arsenic	7440-38-2	0.6	USEPA 2024	0.03	RAGS-E
Iron	7439-89-6	1	conservative assumption	[1]	RAGS-E
Polychlorinated Biphenyls (PCB	5)				
Aroclor-1254	11097-69-1	1	conservative assumption	0.14	RAGS-E

Notes:

RAGS-E - Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)

USEPA 2024 - United States Environmental Protection Agency, Regional Screening Level Tables, May 2024

[1] In accordance with RAGS-E, there are no default dermal absorption values for inorganic compounds because the speciation of the compound is critical to the dermal absorption and there are too little data to extrapolate a reasonable default value.

$ R_{proc} $ Indeental Soli Ingestion Rate=100 $ngesolidydefault assumption for a controller (WOEP 2023)SAExposed Suface Area 'Sol=0.22ng'(m)'-A'Soli Adherence Factor=0.12ng'(m)'-G'Conversion Factor=1.06:05ug'(m)'-G'Conversion Factor=1.06:05ug'(m)'-R'Fraction of Daily Total -Soli Ing=1untiles:assume 100% of daily soli contact occurs from soli at the siteFCExposure Time=1hour/daytime spect outdoors (professional judgment)FFExposure Time=7day/yearbased on 3 days a week for 6 months (assumes warm months, May - Oct.) (professional judgment)FFExposure Duration=2.5yearsdefault assumption for a contingen based on Iffettime (ny POR2)FMBody Weight=88effetti assumption for a contingen based on Iffettime (ny POR2)FMBody Weight=8.08default assumption for a contingen based on Iffettime in years x 365 day/year) (USEPA 1989)AT (c)Averaging Time-Contingene (Induktion)=5.12.00Noursaveraging time for a contingen based on Iffettime in years x 365 day/year) (USEPA 2004)AT (c)Averaging Time-Contingene (Induktion)=5.12.00Noursaveraging time for a contingen based on Iffettime in years x 365 day/year) (USEPA 2004)AT (c)Averaging Time-Contingene (Induktion)=5.12.00Nours$	[Parameter			Value	Units	Comments/References
SAExpand Surface Area - Soil=6, S27om/daydefault assumption for a commercial/industrial receptor (WVCBP 2023)GFConversion Factor=1.0E-05kg/mgGFConversion Factor=1.0E-05kg/mgGFFraction of Daily Total - Soil Ing=1unitiesassume 100% of daily soil ingostion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitiesassume 100% of daily soil ingostion occurs from soil at the siteFCExposure Time=1unitiesassume 100% of daily soil contact occurs from soil at the siteFCExposure Frequency=72day/daybaced total days aveck for 6 months (sournes warm months, May - Oct.) (professional judgment)FDExposure Dirach=8default assume 100% of daily soil contact occurs from soil at the siteFCRaveraging Time-Carcinogenic (Ing/Derm)=5.55dayweeraging time for a contactiongen (bace of the Inde of To years (Mettime in years x 365 day/year x 24 hours/day) (USEPA 1989)AT (nc)Averaging Time-Carcinogenic (Ing/Derm)=5.13,00hoursaveraging time for a non-carcinogen (ED nyears x 365 day/year x 24 hours/day) (USEPA 209)AT (nc)Averaging Time-Carcinogenic (Ing/Derm)= $8.81e^{-6}$ acluatedAT (nc)Averaging Time-Carcinogenic (Indiation)= $8.81e^{-6}$ acluatedAT (nc)Averaging Time-Carcinogenic (Indiation)= $8.81e^{-6}$ acluatedAT (nc)Averaging Ti	ĺ	IR _{ing-s}	Incidental Soil Ingestion Rate	=	100	mg-soil/day	default assumption for an outdoor worker (WVDEP 2023)
AF Soli Adjvence factor=0.12mg/mtdefault assumption for a commercial/industrial receptor (WVDEP 2023). GF_{2} Conversion Factor=1.0E-03 \mug/mg FI fraction folly Total-Soli Ing=1unitesassumes 100% of daily soli Ingestion accurs from soil at the site FC Fraction folly Total-Soli Derm=1unitesassumes 100% of daily soli Contact occurs from soil at the site FC Exposure Frequency=72days/verabased on 3 daysdefault assumption for a commercial/inductrial receptor (WVDEP 2023) BW Body Weight=80kgdefault assumption for a commercial/inductrial receptor (WVDEP 2023) $AT(c)$ Averaging Time-Carcingenic (Ing/Derm)=2.5550daysaveraging time for a contact-ingene table of 0 yours (lifetime in years x 365 days/year) (USEPA 1989) $AT(c)$ Averaging Time-Carcingenic (Ing/Derm)=2.5550daysaveraging time for a contact-ingene table of 0 years (lifetime in years x 365 days/year) (USEPA 1989) $AT(c)$ Averaging Time-Carcingenic (Ing/Derm)=2.5550daysaveraging time for a contact-ingene table of 0 years (lifetime in years x 365 days/year) (USEPA 2023) $AT(c)$ Averaging Time-Carcingenic (Ing/Derm)=2.5500bursaveraging time for a contact-ingene table of 0 years (lifetime in years x 365 days/year) (USEPA 2024) $AT(c)$ Averaging Time-Carcingenic (Ing/Derm)=2.5100bursaveraging time for a contact-ingene table of 0 years (lifetime in years x 365 days/year x 24 hours/day)		SA	Exposed Surface Area - Soil	=	3,527	cm²/day	default assumption for a commercial/industrial receptor (WVDEP 2023)
G_{12} Conversion Factor=1.02-03 kg/mg G_{2} Conversion Factor=1.02-03 \mug/mg G_{12} Fraction of Dally Total -Soil Ing=1.1unitiesassumes 100% of faily soil injection occurs from soil at the site FC Fraction of Dally Total -Soil Derm=1.1unitiesassumes 100% of faily soil concate occurs from soil at the site FC Exposure Frequency=7.2days/yearbased not oblig formation of a commercial/undictual regent outdoors (from sites in soil at the site BW Body Weight=2.5yarsdefault assumption for a commercial/undictual regent outdoors BW Newspang Time-Carcinogenic (ing/Derm)=2.5.50daysaveraging time for a connecrinogen (INCEPA 1989) $AT (c)$ Averaging Time-Carcinogenic (ing/Derm)=9.13.20hoursaveraging time for a nonnecrinogen (INCEPA 1989) $AT (c)$ Averaging Time-Carcinogenic (ing/Derm)=9.13.20hoursaveraging time for a nonnecrinogen (INCEPA 1989) $AT (c)$ Averaging Time-Carcinogenic (inglation)=6.13.200hoursaveraging time for a nonnecrinogen (INCEPA 1989) $AT (c)$ Averaging Time-Carcinogenic (inglation)=8.81E-08kg/kg/daycalulated $IF_{Pag2}(c)$ Ing Indake Factor (Carcinogenic)-Soil=3.734-77kg/kg/daycalulated $IF_{Pag2}(n)$ Absorded Dose (Noncercinogenic)-Soil=3.747-77kg/kg/daycalulated $IF_{Pag2}(n)$ Abs		AF	Soil Adherence Factor	=	0.12	mg/cm²	default assumption for a commercial/industrial receptor (WVDEP 2023)
GF_{γ} Conversion FactorImage: Instance of the sector of the sec		CF 1	Conversion Factor	=	1.0E-06	kg/mg	
FiFraction of Daily Total - Soil Ing=1unitlessassume 100% of daily soil ingestion occurs from soil at the site FC Exposure Trime=1unitlessassume 100% of daily soil coratat occurs from soil at the site FT Exposure Trime=72days/yearbased on 3 days a week for 6months; (days months; (days) of C FF Exposure Duration=25yearsdefault assumption for a commercial/industrial record/industrial record (WDEP 2023) $AT(c)$ Averaging Time-Carcinogenic (Ing/Dern)=9,125daysaveraging time for a carcinogen (DC 2035) $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Dern)=9,125daysaveraging time for a carcinogen (DC 2035) $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Dern)=0,120hoursaveraging time for a carcinogen (DC 2035) $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Dern)=21,250daysaveraging time for a carcinogen (DC 2035) $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Dern)=21,250daysaveraging time for a carcinogen (DC 2035) $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Dern)=21,257daysaveraging time for a concarcinogen (DC 2035) $AT(c)$ Averaging T		CF 2	Conversion Factor	=	1.0E+03	µg/mg	
FCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contract occurs from soil at the siteETExposure Time=4hours/daytime spent outdoors (professional judgment)EDExposure Frequency=72day/syewbased on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)EDBody Weight=80kgdefuit assumption for a commercial/industrial receptor (WVOEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=9,215daysaveraging Time for a contracten adde on lifetime of 70 years (lifetime in years x 365 days/year / USEPA 1989)AT (c)Averaging Time-Carcinogenic (Infalation)=61,300hoursaveraging Time for a anoncarcinogen (ED x 365 days/year x 24 hours/day) (USEPA 2009)If i_{10x} ; (nc)Ing Intake Factor (Noncarcinogenic) - Soil=8,247-07kg/kg-daycalculatedAD downs, (c)Absorbed Dose (Charcinogenic) - Soil= $2.47E-07$ kg/kg-daycalculatedEC c_{c} Inh Exposure Concentration (Ancrinogenic) - Soil= $3.73E-07$ kg/kg-daycalculatedEC c_{c} Inh Exposure Concentration (Noncarcinogenic) - Soil= $0.48m^2$, davcalculatedEC c_{c} Inh Exposure Concentration (Noncarcinogenic) - Soil= $0.48m^2$, davcalculatedEC c_{c} Inh Exposure Concentration (Noncarcinogenic) - Soil= $0.48m^2$, davcalculatedEC c_{c} Inh Exposure Concentration (Noncarcinogenic) - Soil= 0.4		FI	Fraction of Daily Total - Soil Ing	=	1	unitless	assumes 100% of daily soil ingestion occurs from soil at the site
EFExposure Time=4hours/daytime spent outdoors (professional judgment)EFExposure Frequency=7.2days/yearbased on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)EDExposure Duration=2.5yearsdefoult assumption for a notime (a)/notistial receptor (WODE 2023)BWBody Weight=8.0kgdefoult assumption for a notime for a actinogenic (Ing/Derm)=AT (c)Averaging Time-Acarcinogenic (Ing/Derm)=9.125daysaveraging time for a noncarcinogen (Eo 2025)AT (c)Averaging Time-Monarcinogenic (Ing/Derm)=9.125daysaveraging time for a noncarcinogen (Bo 2055 days/year) (USEPA 1989)AT (c)Averaging Time-Monarcinogenic (Inglation)=0.127.00hoursaveraging time for a noncarcinogen (Bo 1) years x 365 days/year 24 hours/day) (USEPA 2004)If n_{exy} (c)Ing Intake Factor (Noncarcinogenic) - Soil=2.147.60kg/kg-daycalculatedAD _{auma} (pc)Absorbed Dose (Cancinogenic) - Soil=0.147.60kg/kg-daycalculatedEC cIn Exposure Concentration (Noncarcinogenic)=0.467.60kg/kg-daycalculatedEC cIn Exposure Concentration (Noncarcinogenic)=0.467.60kg/kg-daycalculatedCS cscSource Concentration (Noncarcinogenic)=0.468.60kg/kg-daycalculatedCC cscIn Exposure Concentration (Noncarcinogenic)=0.468.70kg/kg-daycalculated<		FC	Fraction of Daily Total - Soil Derm	=	1	unitless	assumes 100% of daily soil contact occurs from soil at the site
EFExposure Frequency=72days/yearbased on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)EDExposure Duration=72days/yearbased on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)BWBody Weight=82yearsdefault assumption for a adult (WVDE P 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=75.550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Inhalation)=613.200hoursaveraging time for a noncarcinogen (ED 3 days/year) (USEPA 209) $If _{hog.}$ (C)Ing Intake Factor (Carcinogenic) - Soil=2.19.000hoursaveraging time for a noncarcinogen (ED 3 days/year x 24 hours/day) (USEPA 2009) $If _{hog.}$ (C)Ing Intake Factor (Moncarcinogenic) - Soil=2.19.000hoursaveraging time for a noncarcinogen (ED 1 years x 365 days/year x 24 hours/day) (USEPA 2009) $If _{hog.}$ (C)Ing Intake Factor (Moncarcinogenic) - Soil=2.147.67Kg/kg-daycalculated $AD_{doms.}$ (r)Absorbed Dose (Noncarcinogenic) - Soil=1.046.66Kg/kg-daycalculated $AD_{doms.}$ (r)Absorbed Dose (Noncarcinogenic) - Soil=1.046.66Kg/kg-daycalculated $C_{a.s.}$ Source Concentration (Noncarcinogenic)=0.146.66Kg/kg-daycalculated $C_{a.s.}$ Inhib posure Concentration (Noncarcinogenic)=0.146.66		ET	Exposure Time	=	4	hours/day	time spent outdoors (professional judgment)
EDExposure Duration=2.5yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a commercial/industrial receptor (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=9.125daysaveraging time for a carcinogen for 0 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Inhalation)=613.200hoursaveraging time for a oncarcinogen (ED x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Inhalation)=8.316-08kg/kg-daycalculatedIf a_{ps} (c)Ing Intake Factor (Carcinogenic) - Soil=2.476-07kg/kg-daycalculatedAD dems (c)Absorbed Dose (Incrinogenic) - Soil=2.476-07kg/kg-daycalculatedAD dems (c)Absorbed Dose (Incrinogenic) - Soil=1.044-06kg/kg-daycalculatedCC a_{n} Source Concentration (Noncarcinogenic)=chem-spec μ/m^3 calculatedCB a_n Source Concentration In Soll=chem-spec μ/m^3 calculatedCG a_n Concentration in Moder A=chem-spec μ/m^3 calculatedCG a_n Concentration In Outdor Air=chem-spec μ/m^3 calculatedAD a_n Absorbed Dose (Noncarcinogenic) - Soil=chem-spec μ/m^3 calculatedCG a_n Concentration in Soll=chem-spec μ/m^3 calculated <tr< td=""><td></td><td>EF</td><td>Exposure Frequency</td><th>=</th><td>72</td><td>days/year</td><td>based on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)</td></tr<>		EF	Exposure Frequency	=	72	days/year	based on 3 days a week for 6 months (assumes warm months; May - Oct.) (professional judgment)
BWBody Weight=80kgdefault assumption for an adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (lng/Derm)=25,550daysaveraging time for a concircingen to based on lifetime of Yoyas (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Carcinogenic (lng/Derm)=613,200hoursaveraging time for a concircingen (ED x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (lnhalaton)=613,200hoursaveraging time for a concarcinogen (ED x 365 days/year x 24 hours/day) (USEPA 2009)AT (c)Averaging Time-Noncarcinogenic (lnhalaton)=219,000hoursaveraging time for a concarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009) $F_{hogs}(c)$ Ing Intake Factor (Carcinogenic) - Soil= $2.471-07$ kg/kg-daycalculated $AD_{mins}(n)$ Absorbed Dose (Carcinogenic) - Soil= $1.041-06$ kg/kg-daycalculated EC_{c} Inh ksposure Concentration (Noncarcinogenic)=chem-spec kg/m^2 calculated EC_{c} Inh ksposure Concentration (Noncarcinogenic)=chem-spec kg/m^2 calculated T_{royst} Transfer Factor - Ind/Derm - All Media=1unlitesconservative assumption T_{royst} Transfer Factor - Ind/Derm - All Media=1milesconservative assumption T_{royst} Transfer Factor - Ind/Derm - All Media=1milesconservative assumption T_{royst} Transfer Factor - Ind/Derm - All Media		ED	Exposure Duration	=	25	years	default assumption for a commercial/industrial receptor (WVDEP 2023)
A7 (c)Averaging Time-Carcinogenic (Ing/Derm)=2.550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)A7 (c)Averaging Time-Noncarcinogenic (Inhalation)=9,125daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 1989)A7 (c)Averaging Time-Noncarcinogenic (Inhalation)=0,1320hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 2009)IF $_{rags}$ (c)Ing Intake Factor (Carcinogenic) - Soil=2.476-07kg/kg-daycalculatedAD gions, (c)Absorbed Dose (Carcinogenic) - Soil=3.782-07kg/kg-daycalculatedAD gions, (c)Absorbed Dose (Carcinogenic) - Soil=1.04E-06kg/kg-daycalculatedEC $_{c}$ Inh Exposure Concentration (Noncarcinogenic)=0.487-07kg/kg-daycalculatedEC $_{c}$ Inh Exposure Concentration (Noncarcinogenic)=0.487-07kg/kg or gag or g		BW	Body Weight	=	80	kg	default assumption for an adult (WVDEP 2023)
AT (nc)Averaging Time-Noncarcinogenic (inp/Derm)=9,125daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Noncarcinogenic (inhalation)=613,200hoursaveraging time for a noncarcinogen (ED x 365 days/year x 24 hours/day) (USEPA 2009)IF $_{mgr}$ (C)Ing Intake Factor (Carcinogenic) - Soil=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF $_{mgr}$ (C)Ing Intake Factor (Noncarcinogenic) - Soil=2.47E-07kg/kg-daycalculatedAD $_{dems1}$ (nc)Absorbed Dose (Noncarcinogenic) - Soil=2.47E-07kg/kg-daycalculatedAD $_{dems1}$ (nc)Absorbed Dose (Noncarcinogenic) - Soil=1.04E-06kg/kg-daycalculatedEC $_{c}$ Inh Exposure Concentration (Carcinogenic)=chem-spec. \mug/m^3 calculatedEC $_{c}$ Inh Exposure Concentration (Noncarcinogenic)=chem-spec. \mug/m^3 calculatedGS $_{sc}$ Source Concentration in Soil=chem-spec. \mug/m^3 calculatedGS $_{sc}$ Source Concentration in Outdoor Air=chem-spec. \mug/m^3 calculated valueAA $_{fings4}$ Absorption Adjustment Factor-Soil Ing=1 <unitees< td="">conservative assumptionTr $_{spest}$Transfer Factor - Ing/Derm - All Media=1uniteesI_{mgs4}Absorption Adjustment Factor-Soil Ing=chem-spec.\mug/m^3calculated valueAA $_{fing$</unitees<>		AT (c)	Averaging Time-Carcinogenic (Ing/Derm)	=	25,550	days	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)
AT (c)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 2009)AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 2009) IF_{mgs} (nc)Ing Intake Factor (Noncarcinogenic) - Soil=2.47E-07kg/kg-daycalculated AD_{doms} (nc)Absorbed Dose (Noncarcinogenic) - Soil=3.73E-07kg/kg-daycalculated AD_{doms} (nc)Absorbed Dose (Noncarcinogenic) - Soil=1.04E-06kg/kg-daycalculated EC_e Inh Exposure Concentration (Carcinogenic)=chem-spec.ug/m ³ calculated EC_e Inh Exposure Concentration in Soil=chem-spec.ug/m ³ calculated GS_{Sec} Source Concentration in Soil=nitlessconservative assumption TF Transfer Factor - Ing/Derm - All Media=1unitlesscalculated value AAF_{mgs} Absorption Adjustment Factor-Soil Derm=chem-spec.ug/m ³ calculated value AAF_{mgs} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/kgcalculated value AF_{forms} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/kg-daycalculated value AF_{forms} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/kg-daycalculated value		AT (nc)	Averaging Time-Noncarcinogenic (Ing/Derm)	=	9,125	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009) $IF_{rega-1}(c)$ Ing Intake Factor (Carcinogenic) - Soil=8.81E-08kg/kg-daycalculated $AD_{dams-1}(c)$ Absorbed Dose (Carcinogenic) - Soil=2.47E-07kg/kg-daycalculated $AD_{dams-1}(c)$ Absorbed Dose (Noncarcinogenic) - Soil=1.04E-06kg/kg-daycalculated EC_{c} Inh Exposure Concentration (Carcinogenic)=chem-spec.µg/m ³ calculated EC_{c} Inh Exposure Concentration (Noncarcinogenic)=chem-spec.µg/m ³ calculated CS_{sc} Source Concentration (Noncarcinogenic)=chem-spec.µg/m ³ calculated CS_{sc} Source Concentration in Soil=chem-spec.µg/m ³ calculated TF_{spest} Transfer Factor - Inh (Darcinogenic)=chem-spec.µg/m ³ calculated CS_{sc} Source Concentration in Soil=chem-spec.µg/m ³ calculated CA_{sc} Concentration in Outdoor Air=chem-spec.µg/m ³ calculated value AAF_{moral} Absorption Adjustment Factor-Soil Ing=1mg/mgcalculated value $Ings$ Intake for Ingestion of Soil=chem-spec.mg/mgcalculated value $Ings$ Intake for Ingestion of Soil=chem-spec.mg/mgcalculated value $Ings$ Intake for Ingestio		AT (c)	Averaging Time-Carcinogenic (Inhalation)	=	613,200	hours	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 20
$IF_{inp,s}$ (C)Ing Intake Factor (Carcinogenic) - Soil=8.81E-08kg/kg-daycalculated $IF_{inp,s}$ (nC)Ing Intake Factor (Noncarcinogenic) - Soil=2.47E-07kg/kg-daycalculated $AD_{dem,s}$ (C)Absorbed Dose (Carcinogenic) - Soil=3.73E-07kg/kg-daycalculated $AD_{dem,s}$ (nC)Absorbed Dose (Noncarcinogenic) - Soil=1.04E-06kg/kg-daycalculated EC_{e} Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu E/m^3$ calculated EC_{nc} Inh Exposure Concentration (Noncarcinogenic)=chem-spec. $\mu E/m^3$ calculated CS_{src} Source Concentration in Soil=ohem-spec. $\mu E/m^3$ calculated TF Transfer Factor - Inh (particulates) - Soil7.35E-10kg/m³default value (1.36E+9 m³/kg) ¹² (USEPA 2024) CA_{a} Concentration in Outdoor Air=chem-spec. $\mu g/m³$ calculated value AAF_{mays} Absorption Adjustment Factor-Soil Ing=chem-spec. $m g/mg$ conservative assumption $I_{inp,5}$ Intake for Ingestion of Soil=chem-spec. $m g/kg-day$ chemical - specific $I_{imp,5}$ Intake for Ingestion of Soil=chem-spec. $m g/kg-day$ chemical - specific $I_{imp,5}$ Intake for Ingestion of Soil=chem-spec. $m g/kg-day$ chemical - specific $I_{imp,5}$ Intake for Ingestion of Soil=chem-spec. $m g/kg-day$ chemical - specific <t< td=""><td></td><td>AT (nc)</td><td>Averaging Time-Noncarcinogenic (Inhalation)</td><th>=</th><td>219,000</td><td>hours</td><td>averaging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)</td></t<>		AT (nc)	Averaging Time-Noncarcinogenic (Inhalation)	=	219,000	hours	averaging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)
IF_{apps} (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $2.47E-07$ $kg/kg-day$ calculated AD_{derms} (nc)Absorbed Dose (Carcinogenic) - Soil= $3.73E+07$ $kg/kg-day$ calculated AD_{derms} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $1.04E+06$ $kg/kg-day$ calculated EC_c Inh Exposure Concentration (Carcinogenic)= $chem-spec$. \mug/m^3 calculated EC_ac Inh Exposure Concentration (Noncarcinogenic)= $chem-spec$. \mug/m^3 calculated CS_{sic} Source Concentration In Soil= $chem-spec$. \mug/m^3 calculated TF Transfer Factor - Inh (particulates) - Soil= $ntless$ conservative assumption TF_{oport} Transfer Factor - Soil Derm= $chem-spec$. \mug/m^3 calculated value AAF_{amps} Absorption Adjustment Factor-Soil Ing= $chem-spec$. \mug/m^3 calculated value AAF_{amps} Absorption Adjustment Factor-Soil Derm= $chem-spec$. mg/mg chemical - specific I_{amps} Intake for Ingestion of Soil= $chem-spec$. mg/kg daychemical - specific I_{ams} Intake for Dermal Contact with Soil= $chem-spec$. $mg/kg-day$ chemical - specific I_{ams} Intake for Ingestion of Soil= $chem-spec$. $mg/kg-day$ chemical - specific I_{ams} Intake for Ingestion of Soil= $chem-spec$. $mg/kg-day$ chemical - specific I_{ams}		IF _{ing-s} (c)	Ing Intake Factor (Carcinogenic) - Soil	=	8.81E-08	kg/kg-day	calculated
ADdescriptiondescriptionis an analysisis an analysisis an analysisADdescriptiondescriptionis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysisis an analysisis an analysisis an analysisCis an analysisis an analysis <t< td=""><td></td><td>IF _{ing-s} (nc)</td><td>Ing Intake Factor (Noncarcinogenic) - Soil</td><th>=</th><td>2.47E-07</td><td>kg/kg-day</td><td>calculated</td></t<>		IF _{ing-s} (nc)	Ing Intake Factor (Noncarcinogenic) - Soil	=	2.47E-07	kg/kg-day	calculated
AD_{derms} (nc)Absorbed Dose (Noncarcinogenic) - Soil=1.04E-06kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated EC_nc Inh Exposure Concentration (Noncarcinogenic)=chem-spec. $\mu g/m^3$ calculated CS_{src} Source Concentration in Soil=chem-spec. $\mu g/m^3$ calculated CS_{src} Source Concentration in Soil=chem-spec. $\mu g/m^3$ calculated $TF_{p,part}$ Transfer Factor - Ing/Derm - All Media=1unitlessconservative assumption $TF_{p,part}$ Transfer Factor - Ing/Derm - All Media=1 $m g/mg$ calculated value $AAF_{mg,s}$ Absorption Adjustmet Factor-Soil Ing=chem-spec. mg/mg calculated value $AAF_{mg,s}$ Absorption Adjustmet Factor-Soil Derm=chem-spec. $mg/kg-day$ chemical - specific $Imgs^{-1}$ Intake for Ingestion of Soil=chem-spec. $mg/kg-day$ chemical - specific I_{mgs}^{-1} Intake for Dermal Contact with Soil=chem-spec. $mg/kg-day$ chemical - specific I_{derms}^{-1} Intake for Dermal Contact with Soil=chem-spec. $mg/kg-day$ chemical - specific I_{derms}^{-1} Intake for Dermal Contact with Soil=chem-spec. $mg/kg-day$ chemical - specific I_{derms}^{-1} Intake for Dermal Contact with Soil=chem-spec. $mg/kg-day$ chemical - specific </td <td></td> <td>AD _{derm-s} (c)</td> <td>Absorbed Dose (Carcinogenic) - Soil</td> <th>=</th> <td>3.73E-07</td> <td>kg/kg-day</td> <td>calculated</td>		AD _{derm-s} (c)	Absorbed Dose (Carcinogenic) - Soil	=	3.73E-07	kg/kg-day	calculated
EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated EC_{ac} Inh Exposure Concentration (Noncarcinogenic)=chem-spec. $\mu g/m^3$ calculated CS_{src} Source Concentration in Soil=chem-spec. $m g/kg$ or $\mu g/kg$ measured value TF Transfer Factor - Ing/Derm - All Media=1unitlessconservative assumption TF_{opart} Transfer Factor - Inh (particulates) - Soil $T.35E+10$ kg/m^3 calculated value AA_{ags} Concentration in Outdoor Air=chem-spec. $\mu g/mg$ conservative assumption $AA_{f_{adgres}}$ Absorption Adjustment Factor-Soil Ing=chem-spec. mg/kg conservative assumption I_{ings} Intake for Ingestion of Soil=chem-spec. mg/kg -daychemical - specific I_{ings} Intake for Dermal Contact with Soil=chem-spec. mg/kg -daychemical - specific CS_{ac} Oral Cancer Slope Factor=chem-spec. mg/kg -daychemical - specific RfD_0 Oral Reference Dose=chem-spec. mg/kg -daychemical - specific RfD_0 Dermal Cancer Slope Factor=chem-spec. mg/kg -daychemical - specific RfD_0 Dermal Reference Dose=chem-spec. mg/kg -daychemical - specific RfD_0 Dermal Reference Dose=chem-spec. mg/kg -daychemical - specific RfD_0 Dermal Reference Dose=		AD _{derm-s} (nc)	Absorbed Dose (Noncarcinogenic) - Soil	=	1.04E-06	kg/kg-day	calculated
EC_{nc} Inh Exposure Concentration (Noncarcinogenic)=chem-spec. $\mu g/m^3$ calculated CS_{src} Source Concentration in Soil=chem-spec. $mg/kg \text{ or } \mu g/kg$ measured value TF Transfer Factor - Ing/Derm - All Media=1unitlessconservative assumption TF_{opart} Transfer Factor - Inh (particulates) - Soil7.35E-10 kg/m^3 default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024) CA_a Concentration in Outdoor Air=1 mg/mg calculated value AAF_{dems} Absorption Adjustment Factor-Soil Ing=1 mg/mg conservative assumption AAF_{dems} Absorption Adjustment Factor-Soil Derm=chem-spec. mg/mg conservative assumption I_{ing-s} Intake for Ingestion of Soil=chem-spec. mg/kg -daychemical - specific I_{ing-s} Intake for Dermal Contact with Soil=chem-spec. $mg/kg-day$ chemical - specific RbD_O Oral Reference Dose=chem-spec. $mg/kg-day$ chemical - specific RfD_O Dermal Reference Dose=chem-spec. $mg/kg-day$ chemical - specific RfC Reference Concentration <t< td=""><td></td><td>EC c</td><td>Inh Exposure Concentration (Carcinogenic)</td><th>=</th><td>chem-spec.</td><td>μg/m³</td><td>calculated</td></t<>		EC c	Inh Exposure Concentration (Carcinogenic)	=	chem-spec.	μg/m³	calculated
CS_{src} Source Concentration in Soil=chem-spec.mg/kg or µg/kgmeasured value TF Transfer Factor - Ing/Derm - All Media=1unitlessconservative assumption TF_{opart} Transfer Factor - Inh (particulates) - Soil7.35E-10kg/m³default value (1.36E+P m³/kg)^1 (USEPA 2024) CA_a Concentration in Outdoor Air=chem-spec.µg/m³calculated value AAF_{ing-s} Absorption Adjustment Factor-Soil Ing=them-spec.mg/mgconservative assumption AAF_{derm-s} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/mgchemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific RfD_O Oral Reference Dose=chem-spec.mg/kg-daychemical - specific RfD_D Dermal Reference Dose=chem-spec.(mg/kg-day)^1chemical - specific RfD_D Dermal Reference Dose= <td></td> <td>EC nc</td> <td>Inh Exposure Concentration (Noncarcinogenic)</td> <th>=</th> <td>chem-spec.</td> <td>μg/m³</td> <td>calculated</td>		EC nc	Inh Exposure Concentration (Noncarcinogenic)	=	chem-spec.	μg/m³	calculated
TFTransfer Factor - Ing/Derm - All Media=1unitlessconservative assumptionTF $_{o-part}$ Transfer Factor - Inh (particulates) - Soil7.35E-10kg/m³default value $(1.36E+9 m³/kg)^1$ (USEPA 2024)CA $_o$ Concentration in Outdoor Air=chem-spec.µg/m³calculated valueAAF $_{img-s}$ Absorption Adjustment Factor-Soil Ing=1mg/mgconservative assumptionAAF $_{derm-s}$ Absorption Adjustment Factor-Soil Derm=chem-spec.mg/mgchemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{ing-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific CSF_o Oral Cancer Slope Factor=chem-spec.(mg/kg-day)^1chemical - specific RfD_o Dermal Cancer Slope Factor=chem-spec.mg/kg-daychemical - specific RfD_o Dermal Reference Dose=chem-spec.mg/kg-day)^1chemical - specific RfD_o Dermal Reference Dose=chem-spec.mg/kg-day)^1chemical - specific IUR Inhalation Unit Risk=chem-spec.(mg/kg-day)^1chemical - specific RfC Reference Concentration=chem-spec.(mg/kg-day)^1chemical - specific RfC Reference Concentration=chem-spec.(mg/kg-day)^1chemical - specific RfD_o Dermal Reference Tose=chem-spec.<		CS src	Source Concentration in Soil	=	chem-spec.	mg/kg or μg/kg	measured value
$TF_{a,port}$ Transfer Factor - Inh (particulates) - Soil $7.35E-10$ kg/m³default value $(1.36E+9 m^3/kg)^{-1}$ (USEPA 2024) CA_a Concentration in Outdoor Air=chem-spec. $\mu g/m³$ calculated value AAF_{ing-s} Absorption Adjustment Factor-Soil Ing=1mg/mgconservative assumption AAF_{derm-s} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/mgchemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific CSF_o Oral Cancer Slope Factor=chem-spec.mg/kg-daychemical - specific RfD_o Oral Reference Dose=chem-spec.mg/kg-daychemical - specific RfD_D Dermal Reference Dose=chem-spec.mg/kg-daychemical - specific RfD_D Inhalation Unit Risk=chem-spec.mg/kg-daychemical - specific IUR Inhalation Unit Risk=chem-spec.(mg/kg-day)^{-1}chemical - specific RfC Reference Concentration=chem-spec.(mg/m³)^{-1}chemical - specific RfC Reference Concentration=chem-spec.(mg/m³)^{-1}chemical - specific RfC Reference Concentration=chem-spec.(mg/m³)chemical - specific RfC Reference Concentration=chem-spec.(mg/m³)		TF	Transfer Factor - Ing/Derm - All Media	=	1	unitless	conservative assumption
CA_a Concentration in Outdoor Air=chem-spec. $\mu g/m^3$ calculated value AAF_{ing-s} Absorption Adjustment Factor-Soil Ing=1 mg/mg conservative assumption AAF_{derm-s} Absorption Adjustment Factor-Soil Derm=chem-spec. mg/mg chemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec. mg/kg -daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec. mg/kg -daychemical - specific CSF_o Oral Cancer Slope Factor=chem-spec. mg/kg -daychemical - specific RfD_o Oral Reference Dose=chem-spec. mg/kg -daychemical - specific RfD_D Dermal Cancer Slope Factor=chem-spec. mg/kg -daychemical - specific RfD_D Dermal Reference Dose=chem-spec. mg/kg -daychemical - specific RfD_D Dermal Reference Dose=chem-spec. mg/kg -daychemical - specific IUR Inhalation Unit Risk=chem-spec. $(\mu g/m^3)^{-1}$ chemical - specific RfC Reference Concentration=chem-spec. $(mg/m^3)^{-1}$ chemical - specific		TF a-part	Transfer Factor - Inh (particulates) - Soil		7.35E-10	kg/m ³	default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)
AAF_{ing-s} Absorption Adjustment Factor-Soil Ing=1mg/mgconservative assumption AAF_{derm-s} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/mgchemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-day)^1chemical - specific SF_O Oral Cancer Slope Factor=chem-spec.mg/kg-day)^1chemical - specific RfD_O Oral Reference Dose=chem-spec.mg/kg-day)^1chemical - specific RfD_D Dermal Cancer Slope Factor=chem-spec.mg/kg-day)^1chemical - specific RfD_D Dermal Reference Dose=chem-spec.mg/kg-day)^1chemical - specific IUR Inhalation Unit Risk=chem-spec.(mg/m³)^1chemical - specific RfC Reference Concentration=chem-spec.(mg/m³)chemical - specific		CA _a	Concentration in Outdoor Air	=	chem-spec.	µg/m³	calculated value
AAF_{derm-s} Absorption Adjustment Factor-Soil Derm=chem-spec.mg/mgchemical - specific I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific CSF_{O} Oral Cancer Slope Factor=chem-spec.(mg/kg-day)^{-1}chemical - specific RfD_{O} Oral Reference Dose=chem-spec.(mg/kg-day)^{-1}chemical - specific RfD_{D} Dermal Cancer Slope Factor=chem-spec.(mg/kg-day)^{-1}chemical - specific RfD_{D} Dermal Reference Dose=chem-spec.(mg/kg-day)^{-1}chemical - specific RfD_{D} Dermal Reference Dose=chem-spec.(mg/kg-day)^{-1}chemical - specific IUR Inhalation Unit Risk=chem-spec.(mg/m ³) ⁻¹ chemical - specific RfC Reference Concentration=chem-spec.(mg/m ³)chemical - specific		AAF ing-s	Absorption Adjustment Factor-Soil Ing	=	1	mg/mg	conservative assumption
I_{ing-s} Intake for Ingestion of Soil=chem-spec.mg/kg-daychemical - specific I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific CSF_{O} Oral Cancer Slope Factor=chem-spec.(mg/kg-day)^1chemical - specific RfD_{O} Oral Reference Dose=chem-spec.mg/kg-daychemical - specific CSF_{D} Dermal Cancer Slope Factor=chem-spec.(mg/kg-day)^1chemical - specific RfD_{D} Dermal Reference Dose=chem-spec.(mg/kg-day)^1chemical - specific RfD_{D} Dermal Reference Dose=chem-spec.mg/kg-daychemical - specific IUR Inhalation Unit Risk=chem-spec.(mg/m ³) ⁻¹ chemical - specific RfC Reference Concentration=chem-spec.(mg/m ³)chemical - specific		AAF derm-s	Absorption Adjustment Factor-Soil Derm	=	chem-spec.	mg/mg	chemical - specific
I_{derm-s} Intake for Dermal Contact with Soil=chem-spec.mg/kg-daychemical - specific CSF_{O} Oral Cancer Slope Factor=chem-spec. $(mg/kg-day)^{-1}$ chemical - specific RfD_{O} Oral Reference Dose=chem-spec. $mg/kg-day$ chemical - specific CSF_{D} Dermal Cancer Slope Factor=chem-spec. $mg/kg-day$ chemical - specific RfD_{D} Dermal Reference Dose=chem-spec. $(mg/kg-day)^{-1}$ chemical - specific RfD_{D} Dermal Reference Dose=chem-spec. $mg/kg-day$ chemical - specific IUR Inhalation Unit Risk=chem-spec. $(\mug/m^3)^{-1}$ chemical - specific RfC Reference Concentration=chem-spec. (mg/m^3) chemical - specific		I _{ing-s}	Intake for Ingestion of Soil	=	chem-spec.	mg/kg-day	chemical - specific
CSF_o Oral Cancer Slope Factor= $chem-spec.$ $(mg/kg-day)^{-1}$ $chemical - specific$ RfD_o Oral Reference Dose= $chem-spec.$ $mg/kg-day$ $chemical - specific$ CSF_D Dermal Cancer Slope Factor= $chem-spec.$ $(mg/kg-day)^{-1}$ $chemical - specific$ RfD_D Dermal Reference Dose= $chem-spec.$ $(mg/kg-day)^{-1}$ $chemical - specific$ IUR Inhalation Unit Risk= $chem-spec.$ $(\mug/m^3)^{-1}$ $chemical - specific$ RfC Reference Concentration= $chem-spec.$ (mg/m^3) $chemical - specific$		I derm-s	Intake for Dermal Contact with Soil	=	chem-spec.	mg/kg-day	chemical - specific
RfD_o Oral Reference Dose=chem-spec.mg/kg-daychemical - specific CSF_D Dermal Cancer Slope Factor=chem-spec. $(mg/kg-day)^{-1}$ chemical - specific RfD_D Dermal Reference Dose=chem-spec. $mg/kg-day$ chemical - specific IUR Inhalation Unit Risk=chem-spec. $(\mug/m^3)^{-1}$ chemical - specific RfC Reference Concentration=chem-spec. (mg/m^3) chemical - specific		CSF o	Oral Cancer Slope Factor	=	chem-spec.	(mg/kg-day)⁻¹	chemical - specific
CSF_D Dermal Cancer Slope Factor=chem-spec. $(mg/kg-day)^{-1}$ chemical - specific RfD_D Dermal Reference Dose=chem-spec. $mg/kg-day$ chemical - specific IUR Inhalation Unit Risk=chem-spec. $(\mug/m^3)^{-1}$ chemical - specific RfC Reference Concentration=chem-spec. $(mg/m^3)^{-1}$ chemical - specific		RfD ₀	Oral Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
RfD_D Dermal Reference Dose=chem-spec.mg/kg-daychemical - specific IUR Inhalation Unit Risk=chem-spec. $(\mu g/m^3)^{-1}$ chemical - specific RfC Reference Concentration=chem-spec. $(m g/m^3)$ chemical - specific		CSF _D	Dermal Cancer Slope Factor	=	chem-spec.	(mg/kg-day)⁻¹	chemical - specific
IURInhalation Unit Risk=chem-spec. $(\mu g/m^3)^{-1}$ chemical - specificRfCReference Concentration=chem-spec. $(m g/m^3)$ chemical - specific	ļ	RfD _D	Dermal Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
<i>RfC</i> Reference Concentration = chem-spec. (mg/m^3) chemical - specific	ļ	IUR	Inhalation Unit Risk	=	chem-spec.	(µg/m ³) ⁻¹	chemical - specific
		RfC	Reference Concentration	=	chem-spec.	(mg/m ³)	chemical - specific

References:

ASTM 2015. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. American Society for Testing and Materials, Designation E1739-95, Reapproved 2015.

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989. USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002. USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009.

USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-090/052F, September 2011.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

WVDEP 2023. West Virginia Voluntary Remediation Program Guidance Manual, West Virginia Department of Environmental Protection, October 2023.

Table 7-1 Summary of Exposure Assumptions for On-Site Maintenance Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

000)			
.009)			

Equations

Incidental Ingestion of Soil $IF_{ing-s} = \frac{IR_{ing-s} * CF_1 * FI * EF * ED}{BW * AT}$

$$I_{ing-s} = CS_{src} * TF * AAF_{ing-s} * IF_{ing-s}$$

$$Risk = I_{ing-s(c)} * CSF_0 \qquad HI = \frac{I_{ing-s(nc)}}{RfD_0}$$

.

Dermal Contact with Soil

$$AD_{derm-s} = \frac{SA * AF * CF_1 * FC * EF * ED}{BW * AT}$$

$$I_{derm} = CS_{src} * TF * AAF_{derm-s} * AD_{derm-s}$$

 $HI = \frac{I_{derm - s (nc)}}{RfD_D}$ $Risk = I_{derm-s(c)} * CSF_D$

Inhalation of Constituents Emitted from Soil (Volatiles and Particulates)

$$EC = \frac{CA_a * ET * EF * ED}{AT}$$

$$CA_a = CS_{src} * TF_{a-vol} \qquad CA_a = CS_{src} * TF_{a-part}$$

$$Risk = EC_c * IUR \qquad HI = \frac{EC_{nc}}{RfC * CF_2}$$

Notes:

Equations are based on guidance from USEPA RAGS Part A and USEPA RAGS Part F.

Table 7-1 Summary of Exposure Assumptions for On-Site Maintenance Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

IR_{IRp-1} Incidental Soil Ingestion Rate=100mg-soil/daydefault assumption for a outdoor worker (WVDEP 2023)SAExposed Surface Area - Soil=3,527cm²/daydefault assumption for a commercial/industrial receptor (WVDEP 2023)AFSoil Adherence Factor=0.12mg/cm²default assumption for a commercial/industrial receptor (WVDEP 2023)CFConversion Factor=1.0E-06kg/mgCF2Conversion Factor=1.0E-06kg/mgFIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFFExposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023)EFExposure Duration=25days/veardefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a adult (WVDEP 2023)AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=25,550daysaveraging time for a actrinogen based on lifetime in years x 365 days/year (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=9,125daysaveraging time for a anoncarcinogen (ED x 365 days/year x 24 hours/Ar)AT (c)Averaging Time-Noncarcinogenic (Inhalation)=613,200hoursaveraging time for a noncarci
SAExposed Surface Area - Soil= $3,527$ cm^3/day default assumption for a commercial/industrial receptor (WVDEP 2023)AFSoil Adherence Factor= 0.12 mg/cm^2 default assumption for a commercial/industrial receptor (WVDEP 2023)CF 1Conversion Factor= $1.0E+03$ \mug/mg F1Fraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFTExposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023)EFExposure Frequency=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a not commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a not commercial/industrial receptor (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a not commercial/industrial receptor (WVDEP 1023)AT (nc)Averaging Time-Carcinogenic (Ing/Derm)=9,25,550daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Carcinogenic (Ing/Derm)=9,19,000hoursaveraging time for a noncarcinogen (ED x 365 days/year) (SEPA 1989)AT (nc)Averaging Time-Carcinog
AFSoil Adherence Factor= 0.12 mg/cm^2 default assumption for a commercial/industrial receptor (WVDEP 2023)CF 1Conversion Factor= $1.0E+06$ kg/mg CF 2Conversion Factor= $1.0E+03$ \mug/mg FIFraction of Daily Total - Soil Ing=1unitlesassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlesassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023)EFExposure Frequency=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a commercial/industrial receptor (WVDEP 2023)AT (nc)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=613,200hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF $n_{g,s}$ (nc)Ing Intake Factor (Noncarcinogenic) - Soil=3.06E-07kg/kg-daycalculatedAD $dems (nc)Absorbed Dose (Noncarcinogenic) - Soil=3.06E-07kg/kg-daycalculatedAD dems (nc)Absorbed Dose (Noncarcinogenic) - Soil=3.06E-07k$
CF_1 Conversion Factor=1.0E-06kg/mg CF_2 Conversion Factor=1.0E+03 $\mu g/mg$ FI Fraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the site FC Fraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the site FC Fraction of Daily Total - Soil Derm=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023) ET Exposure Time=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023) ED Exposure Duration=25, yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023) AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=215, daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 198) AT (c)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED x 365 days/year x 24 hours/day) (USEPA 2009) Ir_{mg-s} (c)Ing Intake Factor (Carcinogenic) - Soil=3.06E-07kg/kg-daycalculated AD_{dems} (c)Absorbed Dose (Carcinogenic) - Soil=3.62E-06kg/kg-daycalculated AD_{dems} (c)Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated AT_{C} Absorbed Dose (Carcinogenic) - Soil=3.62E-06kg/kg-daycalculat
CF_2 Conversion Factor=1.0E+03 $\mu g/mg$ Fl Fraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the site FC Fraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the site FT Exposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023) EF Exposure Frequency=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023) ED Exposure Duration=25yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023) BW Body Weight=80kgdefault assumption for a acommercial/industrial receptor (WVDEP 2023) $AT(c)$ Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989) $AT(c)$ Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ $AT_{ns,s}(c)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.06E-07kg/kg-daycalculated $IF_{ng,s}(c)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm,s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm,s}(nc)$ Absorbed D
FIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023)EFExposure Duration=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023)EDExposure Duration=250daysdefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a commercial/industrial receptor (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19AT (nc)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Carcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/ $IF_{mg,s}(nc)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.62E-07kg/kg-daycalculatedAD $_{derm,s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil=3.62E-07kg/kg-daycalculatedAD $_{derm,s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil=3.62E-07kg/kg-daycalculated <th< td=""></th<>
FC Fraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the site ET Exposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023) EF Exposure Duration=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023) ED Exposure Duration=25yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023) BW Body Weight=80kgdefault assumption for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19 $AT (c)$ Averaging Time-Carcinogenic (Ing/Derm)=9,125daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ $AT (c)$ Averaging Time-Concordenciongenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ $AT (c)$ Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/ $AT (c)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.06E-07kg/kg-daycalculated $IF_{ing+s} (c)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm-s} (c)$ Absorbed Dose (Carcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm-s} (nc)$ Absorbed Dose (Noncarcinogenic) - Soil=<
ET Exposure Time=8hours/daydefault assumption for a commercial/industrial receptor (WVDEP 2023) EF Exposure Frequency=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023) ED Exposure Duration=25yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023) BW Body Weight=80kgdefault assumption for a adult (WVDEP 2023) $AT(c)$ Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19 $AT(c)$ Averaging Time-Noncarcinogenic (Ing/Derm)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ $AT(c)$ Averaging Time-Carcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/ day) (USEPA 2009) $IF_{ing-s}(c)$ Ing Intake Factor (Carcinogenic) - Soil= $3.06E-07$ kg/kg-daycalculated $AD_{derm-s}(c)$ Absorbed Dose (Carcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated $AD_{derm-s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c
EFExposure Frequency=250days/yeardefault assumption for a commercial/industrial receptor (WVDEP 2023)EDExposure Duration=25yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for a adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)=9,125daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009) $IF_{ing-5}(c)$ Ing Intake Factor (Carcinogenic) - Soil=3.06E-07kg/kg-daycalculated $AD_{derm-5}(c)$ Ing Intake Factor (Noncarcinogenic) - Soil=1.29E-06kg/kg-daycalculated $AD_{derm-5}(nc)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm-5}(nc)$ Ing Intake Factor (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm-5}(nc)$ Inb Exposure Concentration (Carcinogenic) - Soil=3.62E-06kg/kg-day <th< td=""></th<>
EDExposure Duration=25yearsdefault assumption for a commercial/industrial receptor (WVDEP 2023)BWBody Weight=80kgdefault assumption for an adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=9,125daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF _{ing-s} (c)Ing Intake Factor (Carcinogenic) - Soil=3.06E-07kg/kg-daycalculatedAD _{derm-s} (c)Absorbed Dose (Carcinogenic) - Soil=1.29E-06kg/kg-daycalculatedAD _{derm-s} (nc)Inh Exposure Concentration (Carcinogenic) - Soil=3.62E-06kg/kg-daycalculatedAD _{derm-s} (nc)Inh Exposure Concentration (Carcinogenic)=0.62E-06kg/kg-daycalculatedEC cInh Exposure Concentration (Carcinogenic)=chem-spec.µg/m ³ calculatedEC cInh Exposure Concentration (Carcinogenic)=chem-spec.µg/m ³ calculated
BWBody Weight=80kgdefault assumption for an adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)=9,125daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF ing-s (c)Ing Intake Factor (Carcinogenic) - Soil=3.06E-07kg/kg-daycalculatedAD derm-s (c)Absorbed Dose (Carcinogenic) - Soil=1.29E-06kg/kg-daycalculatedAD derm-s (nc)Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculatedAD derm-s (nc)Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculatedEC cInh Exposure Concentration (Carcinogenic)=3.62E-06kg/kg-daycalculatedEC cInh Exposure Concentration (Carcinogenic)=3.62E-06kg/kg-daycalculatedIE (c)Inh Exposure Concentration (Carcinogenic)=3.62E-06kg/kg-daycalculatedIE (c)Inh Exposure Concentration (Carcinogenic)=
$AT(c)$ Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 19 $AT(nc)$ Averaging Time-Noncarcinogenic (Ing/Derm)=9,125daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989) $AT(c)$ Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ $AT(nc)$ Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/ $AT(nc)$ Averaging Time-Noncarcinogenic) - Soil=3.06E-07kg/kg-daycalculated $IF_{ing-s}(c)$ Ing Intake Factor (Noncarcinogenic) - Soil=8.56E-07kg/kg-daycalculated $AD_{derm-s}(c)$ Absorbed Dose (Carcinogenic) - Soil=1.29E-06kg/kg-daycalculated $AD_{derm-s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated $AD_{derm-s}(nc)$ Absorbed Dose (Noncarcinogenic) - Soil=3.62E-06kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. \mug/m^3 calculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. \mug/m^3 calculated
AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)= $9,125$ daysaveraging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Carcinogenic (Inhalation)= $613,200$ hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/AT (nc)Averaging Time-Noncarcinogenic (Inhalation)= $219,000$ hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF ing-s (c)Ing Intake Factor (Carcinogenic) - Soil= $3.06E-07$ kg/kg-daycalculatedIF ing-s (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculatedAD derm-s (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculatedAD derm-s (nc)Inh Exposure Concentration (Carcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculatedEC cInh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
AT (c)Averaging Time-Carcinogenic (Inhalation)=613,200hoursaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/ averaging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)IF ing-s (c)Ing Intake Factor (Carcinogenic) - Soil= $3.06E-07$ kg/kg-daycalculatedIF ing-s (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculatedAD derm-s (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculatedAD derm-s (nc)Inh Exposure Concentration (Carcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculatedEC cInh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
AT (nc)Averaging Time-Noncarcinogenic (Inhalation)=219,000hoursaveraging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009) IF_{ing-s} (c)Ing Intake Factor (Carcinogenic) - Soil= $3.06E-07$ kg/kg-daycalculated IF_{ing-s} (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $8.56E-07$ kg/kg-daycalculated AD_{derm-s} (c)Absorbed Dose (Carcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculated AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
IF_{ing-s} (c)Ing Intake Factor (Carcinogenic) - Soil= $3.06E-07$ kg/kg-daycalculated IF_{ing-s} (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $8.56E-07$ kg/kg-daycalculated AD_{derm-s} (c)Absorbed Dose (Carcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculated AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
IF_{ing-s} (nc)Ing Intake Factor (Noncarcinogenic) - Soil= $8.56E-07$ kg/kg-daycalculated AD_{derm-s} (c)Absorbed Dose (Carcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculated AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated EC_c Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
AD_{derm-s} (c)Absorbed Dose (Carcinogenic) - Soil= $1.29E-06$ kg/kg-daycalculated AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_{c} Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
AD_{derm-s} (nc)Absorbed Dose (Noncarcinogenic) - Soil= $3.62E-06$ kg/kg-daycalculated EC_{c} Inh Exposure Concentration (Carcinogenic)=chem-spec. $\mu g/m^3$ calculated
EC_c Inh Exposure Concentration (Carcinogenic) = chem-spec. $\mu g/m^3$ calculated
EC_{nc} In Exposure Concentration (Noncarcinogenic) = chem-spec. $\mu g/m^2$ calculated
CS src Source Concentration in Soil = chem-spec. mg/kg or µg/kg measured value
TF Transfer Factor - Ing/Derm - All Media = 1 unitless conservative assumption
TF_{a-part} Transfer Factor - Inh (particulates) - Soil 7.35E-10 kg/m ³ default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)
CA_a Concentration in Outdoor Air = chem-spec. $\mu g/m^3$ calculated value
AAF ing-s Absorption Adjustment Factor-Soil Ing = 1 mg/mg conservative assumption
AAF derm-s Absorption Adjustment Factor-Soil Derm = chem-spec. mg/mg chemical - specific
Intake for Ingestion of Soil = chem-spec. mg/kg-day chemical - specific
Intake for Dermal Contact with Soil = chem-spec. mg/kg-day chemical - specific
CSF_o Oral Cancer Slope Factor = chem-spec. $(mg/kg-day)^{-1}$ chemical - specific
RfD ₀ Oral Reference Dose = chem-spec. mg/kg-day chemical - specific
CSF_D Dermal Cancer Slope Factor = chem-spec. $(mg/kg-day)^{-1}$ chemical - specific
RfD DDermal Reference Dose=chem-spec.mg/kg-daychemical - specific
<i>IUR</i> Inhalation Unit Risk = chem-spec. $(\mu g/m^3)^{-1}$ chemical - specific
RfCReference Concentration=chem-spec.(mg/m³)chemical - specific

References:

ASTM 2015. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. American Society for Testing and Materials, Designation E1739-95, Reapproved 2015.

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989. USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002. USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009.

USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-090/052F, September 2011.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

WVDEP 2023. West Virginia Voluntary Remediation Program Guidance Manual, West Virginia Department of Environmental Protection, October 2023.

Table 7-2 Summary of Exposure Assumptions for On-Site Outdoor Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

>			
.009)			

Incidental Ingestion of Soil

$$IF_{ing-s} = \frac{IR_{ing-s} * CF_1 * FI * EF * ED}{BW * AT}$$

$$I_{ing} = CS_{src} * TF * AAF_{ing-s} * IF_{ing-s}$$

$$Risk = I_{ing} \quad (c) * CSF_0 \qquad \qquad HI = \frac{I_{ing-s}(nc)}{RfD_0}$$

Dermal Contact with Soil

$$AD_{derm-s} = \frac{SA * AF * CF_1 * FC * EF * ED}{BW * AT}$$

 $I_{derm-s} = CS_{src} * TF * AAF_{derm-s} * AD_{derm-s}$

 $Risk = I_{derm-s(c)} * CSF_D \qquad HI = \frac{I_{derm-s(nc)}}{RfD_D}$

Inhalation of Constituents Emitted from Soil (Volatiles and Particulates)

$$EC = \frac{CA_a * ET * EF * ED}{AT}$$

$$CA_a = CS_{src} * TF_{a-vol} \qquad CA_a = CS_{src} * TF_{a-part}$$

$$Risk = EC_c * IUR \qquad HI = \frac{EC_{nc}}{RfC * CF_2}$$

Notes:

Equations are based on guidance from USEPA RAGS Part A and USEPA RAGS Part F.

Table 7-2 Summary of Exposure Assumptions for On-Site Outdoor Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

IR Img-sIncidental Soil Ingestion Rate=330mg-soil/daydefault assumption for a construction/utility worker (WVDEP 2023)SAExposed Surface Area - Soil=3,527cm²/daydefault assumption for a construction/utility worker (WVDEP 2023)AFSoil Adherence Factor=0.3mg/cm²default assumption for a construction/utility worker (WVDEP 2023)CF _Conversion Factor=1.0E-06kg/mgCF _Conversion Factor=1.0E+03µg/mgFIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for a construction cutility worker (MVDEP 2023)AT (cr)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a construction (MUDEP 2023)AT (cr)Av	Parameter			Value	Units	Comments/References
SAExposed Surface Area - Soil=3,527cm²/daydefault assumption for a construction/utility worker (WVDEP 2023)AFSoil Adherence Factor=0.3mg/cm²default assumption for a construction/utility worker (WVDEP 2023)CF 1Conversion Factor=1.0E-06kg/mgCF 2Conversion Factor=1.0E+03µg/mgFIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)BWBody Weight=80kgdefault assumption for a construction scenario (USEPA 2024)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25.50daysaveraging time for a carcinogen based on lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	IR ing-s	Incidental Soil Ingestion Rate	=	330	mg-soil/day	default assumption for a construction/utility worker (WVDEP 2023)
AFSoil Adherence Factor=0.3mg/cm2default assumption for a construction/utility worker (WVDEP 2023)CF 1Conversion Factor=1.0E-06kg/mgCF 2Conversion Factor=1.0E+03µg/mgFIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFTExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction (USEPA 2024)BWBody Weight=80kgdefault assumption for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=350daysaveraging time for a construction of the site of 70 years (lifetime in years x 365 days/year) (USEPA 1989)	SA	Exposed Surface Area - Soil	=	3,527	cm²/day	default assumption for a construction/utility worker (WVDEP 2023)
CF 1Conversion Factor=1.0E-06kg/mgCF 2Conversion Factor=1.0E+03µg/mgFIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction (USEPA 2024)BWBody Weight=80kgdefault assumption for a adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinoge based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (ac)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	AF	Soil Adherence Factor	=	0.3	mg/cm²	default assumption for a construction/utility worker (WVDEP 2023)
CF 2Conversion Factor=1.0E+03μg/mgFlFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFTExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Prequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (lng/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	CF 1	Conversion Factor	=	1.0E-06	kg/mg	
FIFraction of Daily Total - Soil Ing=1unitlessassumes 100% of daily soil ingestion occurs from soil at the siteFCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteFTExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction (utility worker (WVDEP 2023))	CF 2	Conversion Factor	=	1.0E+03	μg/mg	
FCFraction of Daily Total - Soil Derm=1unitlessassumes 100% of daily soil contact occurs from soil at the siteETExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault assumption for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (c)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	FI	Fraction of Daily Total - Soil Ing	=	1	unitless	assumes 100% of daily soil ingestion occurs from soil at the site
ETExposure Time=8hours/daydefault assumption for a construction/utility worker (WVDEP 2023)EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault value for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for a adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=350dayseraging time for a construction/utility worker (WVDEP 2023)AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	FC	Fraction of Daily Total - Soil Derm	=	1	unitless	assumes 100% of daily soil contact occurs from soil at the site
EFExposure Frequency=30days/yeardefault assumption for a construction/utility worker based on acreage of site (WVDEP 2023)EDExposure Duration=1yearsdefault value for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for an adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	ET	Exposure Time	=	8	hours/day	default assumption for a construction/utility worker (WVDEP 2023)
EDExposure Duration=1yearsdefault value for a construction scenario (USEPA 2024)BWBody Weight=80kgdefault assumption for an adult (WVDEP 2023)AT (c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)AT (nc)Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	EF	Exposure Frequency	=	30	days/year	default assumption for a construction/utility worker based on acreage of site (WVDEP 2023)
BW Body Weight = 80 kg default assumption for an adult (WVDEP 2023) AT (c) Averaging Time-Carcinogenic (Ing/Derm) = 25,550 days averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989) AT (nc) Averaging Time-Noncarcinogenic (Ing/Derm) = 350 days default assumption for a construction/utility worker (WVDEP 2023)	ED	Exposure Duration	=	1	years	default value for a construction scenario (USEPA 2024)
AT(c)Averaging Time-Carcinogenic (Ing/Derm)=25,550daysaveraging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989) $AT(nc)$ Averaging Time-Noncarcinogenic (Ing/Derm)=350daysdefault assumption for a construction/utility worker (WVDEP 2023)	BW	Body Weight	=	80	kg	default assumption for an adult (WVDEP 2023)
AT(nc) Averaging Time-Noncarcinogenic (Ing/Derm) = 350 days default assumption for a construction/utility worker (WVDEP 2023)	AT (c)	Averaging Time-Carcinogenic (Ing/Derm)	=	25,550	days	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)
	AT (nc)	Averaging Time-Noncarcinogenic (Ing/Derm)	=	350	days	default assumption for a construction/utility worker (WVDEP 2023)
AT (c) Averaging Time-Carcinogenic (Inhalation) = 613,200 hours averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEP	AT (c)	Averaging Time-Carcinogenic (Inhalation)	=	613,200	hours	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEPA 20
AT (nc) Averaging Time-Noncarcinogenic (Inhalation) = 8,400 hours default assumption for a construction/utility worker (WVDEP 2023)	AT (nc)	Averaging Time-Noncarcinogenic (Inhalation)	=	8,400	hours	default assumption for a construction/utility worker (WVDEP 2023)
IF ing-s (c) Ing Intake Factor (Carcinogenic) - Soil = 4.84E-09 kg/kg-day calculated	IF _{ing-s} (c)	Ing Intake Factor (Carcinogenic) - Soil	=	4.84E-09	kg/kg-day	calculated
IF ing-s (nc) Ing Intake Factor (Noncarcinogenic) - Soil = 3.54E-07 kg/kg-day calculated	IF _{ing-s} (nc)	Ing Intake Factor (Noncarcinogenic) - Soil	=	3.54E-07	kg/kg-day	calculated
AD derm-s (c) Absorbed Dose (Carcinogenic) - Soil = 1.55E-08 kg/kg-day calculated	AD _{derm-s} (c)	Absorbed Dose (Carcinogenic) - Soil	=	1.55E-08	kg/kg-day	calculated
AD derm-s (nc) Absorbed Dose (Noncarcinogenic) - Soil = 1.13E-06 kg/kg-day calculated	AD _{derm-s} (nc)	Absorbed Dose (Noncarcinogenic) - Soil	=	1.13E-06	kg/kg-day	calculated
EC_c Inh Exposure Concentration (Carcinogenic) = chem-spec. $\mu g/m^3$ calculated	EC _c	Inh Exposure Concentration (Carcinogenic)	=	chem-spec.	μg/m³	calculated
EC_{nc} Inh Exposure Concentration (Noncarcinogenic) = chem-spec. $\mu g/m^3$ calculated	EC nc	Inh Exposure Concentration (Noncarcinogenic)	=	chem-spec.	μg/m³	calculated
CS src Source Concentration in Soil = chem-spec. mg/kg or µg/kg measured value	CS src	Source Concentration in Soil	=	chem-spec.	mg/kg or μg/kg	measured value
TF Transfer Factor - Ing/Derm - All Media = 1 unitless conservative assumption	TF	Transfer Factor - Ing/Derm - All Media	=	1	unitless	conservative assumption
TF_{a-part} Transfer Factor - Inh (particulates) - Soil = 7.35E-10 kg/m ³ default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)	TF a-part	Transfer Factor - Inh (particulates) - Soil	=	7.35E-10	kg/m ³	default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)
CA_a Concentration in Trench Air = chem-spec. $\mu g/m^3$ calculated value	CA a	Concentration in Trench Air	=	chem-spec.	µg/m³	calculated value
AAF ing-s Absorption Adjustment Factor-Soil Ing = chem-spec. mg/mg chemical - specific	AAF ing-s	Absorption Adjustment Factor-Soil Ing	=	chem-spec.	mg/mg	chemical - specific
AAF derm-s Absorption Adjustment Factor-Soil Derm = chem-spec. mg/mg chemical - specific	AAF derm-s	Absorption Adjustment Factor-Soil Derm	=	chem-spec.	mg/mg	chemical - specific
Intake for Ingestion of Soil = chem-spec. mg/kg-day chemical - specific	I ing-s	Intake for Ingestion of Soil	=	chem-spec.	mg/kg-day	chemical - specific
Intake for Dermal Contact with Soil = chem-spec. mg/kg-day chemical - specific	I derm-s	Intake for Dermal Contact with Soil	=	chem-spec.	mg/kg-day	chemical - specific
CSF_{o} Oral Cancer Slope Factor = chem-spec. $(mg/kg-day)^{-1}$ chemical - specific	CSF o	Oral Cancer Slope Factor	=	chem-spec.	(mg/kg-day) ⁻¹	chemical - specific
<i>RfD</i> _o Oral Reference Dose = chem-spec. mg/kg-day chemical - specific	RfD _o	Oral Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
CSF_D Dermal Cancer Slope Factor = chem-spec. $(mg/kg-day)^{-1}$ chemical - specific	CSF D	Dermal Cancer Slope Factor	=	chem-spec.	(mg/kg-day)⁻¹	chemical - specific
RfD DDermal Reference Dose=chem-spec.mg/kg-daychemical - specific	RfD _D	Dermal Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
<i>IUR</i> Inhalation Unit Risk = chem-spec. $(\mu g/m^3)^{-1}$ chemical - specific	IUR	Inhalation Unit Risk	=	chem-spec.	(µg/m ³) ⁻¹	chemical - specific
<i>RfC</i> Reference Concentration = chem-spec. (mg/m^3) chemical - specific	RfC	Reference Concentration	=	chem-spec.	(mg/m ³)	chemical - specific

References:

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989. USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002. USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009.

USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-090/052F, September 2011.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

VA DEQ 2023. Virginia Unified Risk Assessment Model – VURAM's Users Guide For Risk Assessors. Virginia Department of Environmental Quality, August 2023.

WVDEP 2023. West Virginia Voluntary Remediation Program Guidance Manual, West Virginia Department of Environmental Protection, October 2023.

Table 7-3 Summary of Exposure Assumptions for On-Site Construction Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

)09)

Equations

Incidental Ingestion of Soil

$$IF_{ing} = \frac{IR_{ing-s} * CF_1 * FI * EF * ED}{BW * AT}$$
$$I_{ing-s} = CS_{src} * TF * AAF_{ing-s} * IF_{ing}$$
$$Risk = I_{ing-s (c)} * CSF_0 \qquad HI = \frac{I_{ing} (nc)}{RfD_0}$$

Dermal Contact with Soil

$$AD_{der} = \frac{SA * AF * CF_1 * FC * EF * ED}{BW * AT}$$

 $I_{derm} = CS_{src} * TF * AAF_{derm} * AD_{derm}$

 $Risk = I_{der} \qquad (c) * CSF_D \qquad HI = \frac{I_{derm - s(nc)}}{RfD_D}$

Inhalation of Constituents Emitted from Soil (Volatiles and Particulates)

$$EC = \frac{CA_a * ET * EF * ED}{AT}$$

$$CA_a = CS_{src} * TF_{a-vol} \qquad CA_a = CS_{src} * TF_{a-part}$$

$$Risk = EC_c * IUR \qquad HI = \frac{EC_{nc}}{RfC * CF_2}$$

Notes:

Equations are based on guidance from USEPA RAGS Part A and USEPA RAGS Part F.

Table 7-3 Summary of Exposure Assumptions for On-Site Construction Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Parameter			Value	Units	Comments/References
IR ing-s -child	Incidental Soil Ingestion Rate - Child	=	200	mg-soil/day	default assumption for a child (WVDEP 2023)
IR ing-s -adult	Incidental Soil Ingestion Rate - Adult	=	100	mg-soil/day	default assumption for an adult (WVDEP 2023)
SA _{child}	Exposed Surface Area - Soil - Child	=	3,450	cm²/day	default assumption for a child recreational user at a community park exposed to soil (WVDEP 2023)
SA adult	Exposed Surface Area - Soil - Adult	=	8,890	cm²/day	default assumption for an adult recreational user at a community park exposed to soil (WVDEP 2023)
AF child	Soil Adherence Factor - Child	=	0.4	mg/cm²	default assumption for a child recreational user at a community park exposed to soil (WVDEP 2023)
AF adult	Soil Adherence Factor - Adult	=	0.2	mg/cm²	default assumption for an adult recreational user at a community park exposed to soil (WVDEP 2023)
CF 1	Conversion Factor	=	1.0E-06	kg/mg	
CF 2	Conversion Factor	=	1.0E+03	μg/mg	
FI	Fraction of Daily Total - Soil Ing	=	1	unitless	assumes 100% of daily soil ingestion occurs from soil at the site
FC	Fraction of Daily Total - Soil Derm	=	1	unitless	assumes 100% of daily soil contact occurs from soil at the site
ET	Exposure Time	=	3	hours/day	default assumption for a recreational user at a community park (WVDEP 2023)
EF	Exposure Frequency	=	52	days/year	default assumption for a recreational user at a community park (WVDEP 2023)
ED total	Exposure Duration - Total	=	26	years	default assumption for a resident (WVDEP 2023)
ED child	Exposure Duration - Child	=	6	years	default assumption for a child resident (WVDEP 2023)
ED adult	Exposure Duration - Adult	=	20	years	default assumption for an adult resident (WVDEP 2023)
ED <2	Mutagenic Exposure Duration - Child <2 years	=	2	years	based on age range of 0 to 2 years (WVDEP 2023)
ED 2-6	Mutagenic Exposure Duration - Child 2-6 years	=	4	years	based on age range of 2 to 6 years (WVDEP 2023)
ED >6-16	Mutagenic Exposure Duration - Adult >6-16 years	=	10	years	based on age range of 6 to 16 years (WVDEP 2023)
ED >16	Mutagenic Exposure Duration - Adult >16 years	=	10	years	based on age range of 16 to 26 years (WVDEP 2023)
ADAF <2	Age-Dependent Adjustment Factor - Child <2 years	=	10	unitless	based on age range of 0 to 2 years (USEPA 2024)
ADAF 2-6	Age-Dependent Adjustment Factor - Child 2-6 years	=	3	unitless	based on age range of 2 to 6 years (USEPA 2024)
ADAF >6-16	Age-Dependent Adjustment Factor - Adult >6-16 years	=	3	unitless	based on age range of 6 to 16 years (USEPA 2024)
ADAF >16	Age-Dependent Adjustment Factor - Adult >16 years	=	1	unitless	based on age range of 16 to 26 years (USEPA 2024)
BW child	Body Weight - Child	=	15	kg	default assumption for a child (WVDEP 2023)
BW adult	Body Weight - Adult	=	80	kg	default assumption for an adult (WVDEP 2023)
AT (c)	Averaging Time-Carcinogenic (Ing/Derm)	=	25,550	days	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)
AT (nc) total	Averaging Time-Noncarcinogenic (Ing/Derm) - Total	=	9,490	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (nc) _{child}	Averaging Time-Noncarcinogenic (Ing/Derm) - Child	=	2,190	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (nc) _{adult}	Averaging Time-Noncarcinogenic (Ing/Derm) - Adult	=	7,300	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (c)	Averaging Time-Carcinogenic (Inhalation)	=	613,200	hours	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USE
AT (nc) _{total}	Averaging Time-Noncarcinogenic (Inhalation) - Total	=	227,760	hours	averaging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)
IF ing-s (c) child	Ing Intake Factor (Carcinogenic) - Soil - Child	=	1.63E-07	kg/kg-day	calculated
IF ing-s (c) adult	Ing Intake Factor (Carcinogenic) - Soil - Adult	=	5.09E-08	kg/kg-day	calculated
IF ing-s (c) total	Ing Intake Factor (Carcinogenic) - Soil - Total	=	2.14E-07	kg/kg-day	calculated
AIF ing-s (child)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Child	=	8.68E-07	kg/kg-day	calculated
AIF ing-s (adult)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Adult	=	1.02E-07	kg/kg-day	calculated
AIF _{ing-s} (total)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Total	=	9.70E-07	kg/kg-day	calculated
IF ing-s (nc) child	Ing Intake Factor (Noncarcinogenic) - Soil - Child	=	1.90E-06	kg/kg-day	calculated
IF _{ing-s} (nc) _{adult}	Ing Intake Factor (Noncarcinogenic) - Soil - Adult	=	1.78E-07	kg/kg-day	calculated
IF _{ing-s} (nc) _{total}	Ing Intake Factor (Noncarcinogenic) - Soil - Total	=	2.08E-06	kg/kg-day	calculated
AD derm-s (C) child	Absorbed Dose (Carcinogenic) - Soil - Child	=	1.12E-06	kg/kg-day	calculated
AD _{derm-s} (c) _{adult}	Absorbed Dose (Carcinogenic) - Soil - Adult	=	9.05E-07	kg/kg-day	calculated
AD _{derm-s} (c) _{total}	Absorbed Dose (Carcinogenic) - Soil - Total	=	2.03E-06	kg/kg-day	calculated
AAD _{derm-s} (child)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Child	=	5.99E-06	kg/kg-day	calculated
AAD _{derm-s} (adult)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Adult	=	1.81E-06	kg/kg-day	calculated
AAD _{derm-s} (total)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Total	=	7.80E-06	kg/kg-day	calculated
AD derm-s (nc) child	Absorbed Dose (Noncarcinogenic) - Soil - Child	=	1.31E-05	kg/kg-day	calculated
AD _{derm-s} (nc) _{adult}	Absorbed Dose (Noncarcinogenic) - Soil - Adult	=	3.17E-06	kg/kg-day	calculated
AD derm-s (nc) total	Absorbed Dose (Noncarcinogenic) - Soil - Total	=	1.63E-05	kg/kg-day	calculated
EC _c	Inh Exposure Concentration (Carcinogenic)	=	chem-spec.	unitless	calculated
EC nc	Inh Exposure Concentration (Noncarcinogenic)	=	chem-spec.	unitless	calculated

Table 7-4 Summary of Exposure Assumptions for On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

EPA 2009)

Parameter			Value	Units	Comments/References
AED	Combined Age-Dependent Adjustment Factor	=	1.12E+04	hours	calculated
CS src	Source Concentration in Soil	=	chem-spec.	mg/kg or μg/kg	measured value
TF	Transfer Factor - Ing/Derm - All Media	=	1	unitless	conservative assumption
TF a-vol	Transfer Factor - Inh (volatiles) - Soil	=	chem-spec.	kg/m ³	calculated using the soil volatilization model from the Soil Screening Guidance (USEPA 2002)
TF a-part	Transfer Factor - Inh (particulates) - Soil		7.35E-10	kg/m ³	default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)
VF	Volatilization Factor - Groundwater	=	chem-spec.	L/m³	calculated using the groundwater volatilization model (ASTM 2015)
CA a	Concentration in Outdoor Air	=	chem-spec.	µg/m³	calculated value
AAF ing-s	Absorption Adjustment Factor-Soil Ing	=	chem-spec.	mg/mg	chemical - specific
AAF _{derm-s}	Absorption Adjustment Factor-Soil Derm	=	chem-spec.	mg/mg	chemical - specific
I ing-s	Intake for Ingestion of Soil	=	chem-spec.	mg/kg-day	chemical - specific
I derm-s	Intake for Dermal Contact with Soil	=	chem-spec.	mg/kg-day	chemical - specific
CSF o	Oral Cancer Slope Factor	=	chem-spec.	(mg/kg-day) ⁻¹	chemical - specific
RfD ₀	Oral Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
CSF D	Dermal Cancer Slope Factor	=	chem-spec.	(mg/kg-day) ⁻¹	chemical - specific
RfD _D	Dermal Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
IUR	Inhalation Unit Risk	=	chem-spec.	(µg/m³)⁻¹	chemical - specific
RfC	Reference Concentration	=	chem-spec.	(mg/m ³)	chemical - specific

References:

ASTM 2015. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. American Society for Testing and Materials, Designation E1739-95, Reapproved 2015.

National Recreation and Parks Association 2022. 2022 Engagement with Parks Report. National Recreation and Parks Association, September 13, 2022.

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989.

USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002.

USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009. USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009. USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, EPA/600/R-090/052F, September 2011.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

WVDEP 2023. West Virginia Voluntary Remediation Program Guidance Manual, West Virginia Department of Environmental Protection, October 2023.

Table 7-4 Summary of Exposure Assumptions for On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Incidental Ingestion of Soil - Non-mutagenic Carcinogens and Noncarcinogens $IF_{ing-s} = \frac{IR_{ing-s} * CF_1 * FI * EF * ED}{BW * AT}$ $IF_{ing-s}(total) = IF_{ing}$ (child) + $IF_{ing-s}(adult)$

$$I_{ing-s} = CS_{src} * TF * AAF_{ing-s} * IF_{ing-s}$$

$$Risk = I_{ing-s(c)} * CSF_0 \qquad HI = \frac{I_{ing-s(nc)}}{RfD_0}$$

Dermal Contact with Soil - Non-mutagenic Carcinogens and Noncarcinogens

$$AD_{derm-s} = \frac{SA * AF * CF_1 * FC * EF * ED}{BW * AT}$$

 $AD_{derm-s}(total) = AD_{derm-s}(child) + AD_{derm-s}(adult)$

$$I_{derm-} = CS_{src} * TF * AAF_{der} * AD_{derm-s}$$

$$Risk = I_{der} \quad s(c) * CSF_D \qquad HI = \frac{I_{derm-s(nc)}}{RfD_D}$$

Inhalation of Constituents Emitted from Soil (Volatiles and Particulates) to Outdoor Air - Non-mutagenic Carcinogens and Noncarcinogens

$$EC = \frac{CA_a * ET * EF * ED}{AT}$$

$$CA_a = CS_{src} * TF_{a-vol}$$

$$CA_a = CS_{src} * TF_{a-par}$$

$$Risk = EC_c * IUR$$

$$HI = \frac{EC_{nc}}{RfC * CF_2}$$

Equations

In

$$\begin{aligned} AlF_{ing} \quad (child) &= [(ADAF_{c2} * EP_{c2}) + (ADAF_{c3-6} * ED_{2-6} * EF_{2-6})] + \frac{IR_c * FI * CF_i}{BW_c * AT_c} \\ AlF_{ing} \quad (adult) &= [(ADAF_{c3-4} * ED_{c3-6+6} * EF_{2-6-16}) + (ADAF_{2-6} * EF_{2-6})] + \frac{IR_c * FI * CF_i}{BW_c * AT_c} \\ AlF_{ing-s} \quad (adult) &= [(ADAF_{c3-1} * ED_{c3-16} * EF_{c3-16}) + (ADAF_{c3-6} * EF_{c3-16})] + \frac{IR_c * FI * CF_i}{BW_c * AT_c} \\ AlF_{ing-s} \quad (child) &= AIF_{ing-c} \quad (child) + AIF_{ing-s} (adult) \\ I_{ing} \quad &= CS_{src} * TF * AAF_{ing-s} * AIF_{ing-s} \\ Risk &= I_{ing-s} * cSF_0 \end{aligned}$$
ermal Contact with Sol - Mutagenic Carcinogens
$$AAD_{arm-s} (child) &= [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{c4-6} * EF_{c2-6})] * \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c} \\ AAD_{derm-s} (adult) &= [(ADAF_{c4-16} * ED_{c3-16} * EF_{2-6+16}) + (ADAF_{c4-6} * EF_{c3-16})] * \frac{SA_c * AF_c * CF_1 * FC}{BW_a * AT_c} \\ AAD_{derm-s} (adult) &= [(ADAF_{c4-16} * ED_{c3-16} * EF_{2-6+16}) + (ADAF_{c4-6} * EF_{c3-16})] * \frac{SA_c * AF_c * CF_1 * FC}{BW_a * AT_c} \\ AIF_{derm-} \quad (total) = AIF_{derm-1} \quad (adult) \\ I_{derm} \quad &= CS_{src} * TF * AAF_{derm} * AIF_{derm-s} \\ Risk &= I_{derm-s} \quad child + AIF_{derm-s} \\ Risk &= I_{derm-s} * CSF_D \\ \\ to of Constituents Emitted from Soll (Volatiles and Particulates) to Outdoor Air - Mutagenic Carcinogens \\ D_{c2} * EF_{c2} * ET_{c2}) + (ADAF_{2-6} * EF_{2-6} * ET_{2-6}) + (ADAF_{2-6-16} * EF_{2-6-16} * EF_{2-6-16}) + (ADAF_{2-16} * EF_{2-1} * ET_{2-16}) \\ CA_a &= CS_{src} * TF_{a-part} \\ EC_c &= \frac{CA_a * AED}{AT_c} \\ Risk &= I_{dc} \\ Risk &= E_c * UR \\ \end{array}$$

De

$$\begin{aligned} \text{idential Ingestion of Sol - Mutagenic Carcinogens} \\ AIF_{ing} \quad (child) = \left[(ADAF_{c2} + ED_{c2} + EF_{c2}) + (ADAF_{2-6} + ED_{2-6} + EF_{2-6})\right] + \frac{IR_c + FI + CF_1}{BW_c + AT_c} \\ AIF_{ing-a} \quad (adult) = \left[(ADAF_{c0-1} + ED_{2-6-16} + EF_{2-6-16}) + (ADAF_{2-16} + EF_{2-16})\right] + \frac{IR_a + FI + CF_1}{BW_a + AT_c} \\ AIF_{ing-a} \quad (child) = AIF_{ing-a} \quad (child) + AIF_{ing-a} (adult) \\ l_{ing} = CS_{src} * TF * AAF_{ing-a} * AIF_{ing-a} \\ Risk = l_{ing-a} + CSF_0 \\ \end{aligned}$$
rmal Contact with Sol - Mutagenic Carcinogens \\ AAD_{derm-a} (child) = \left[(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})\right] + \frac{SA_c + AF_c + CF_1 * FC}{BW_c + AT_c} \\ AID_{derm-a} (adult) = \left[(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * ED_{2-6} * EF_{2-10})\right] + \frac{SA_c + AF_c + CF_1 * FC}{BW_c + AT_c} \\ AID_{derm-a} (adult) = \left[(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * ED_{2-6} * EF_{2-10})\right] + \frac{SA_c + AF_c + CF_1 * FC}{BW_a + AT_c} \\ AID_{derm-a} (adult) = \left[(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * ED_{2-6} * EF_{2-10})\right] + \frac{SA_c + AF_c + CF_1 * FC}{BW_a + AT_c} \\ AID_{derm-a} (adult) = \left[(ADAF_{c2-1} * ED_{2-6-10} * EF_{2-6})\right] + (ADAF_{2-16} * ED_{2-16} * EF_{2-10})\right] + \frac{SA_c + AF_c + CF_1 * FC}{BW_a + AT_c} \\ AIF_{derm} (total) = AIF_{derm-a} (child) + AIF_{derm} (adult) \\ I_{derm} = CS_{src} * TF * AAF_{derm} * AIF_{derm-a} \\ Risk = I_{derm-a} * CSF_0 \\ \text{ion of Constituents Emitted from Sol (Volatiles and Particulates) to Outdoor Air - Mutagenic Carcinogens \\ Oc_2 * EF_{c2} * ET_{c2}) + (ADAF_{2-6} * ED_{2-6} * EF_{2-6}) + (ADAF_{2-6-1} * ED_{2-1-6} * EF_{2-6-16}) + (ADAF_{2-16} * ED_{2-16} * EF_{2-1} * ET_{2-10}) \\ CA_a = CS_{src} * TF_{a-vo} \\ CA_a = CS_{src} * TF_{a-part} \\ EC_c = \frac{CA_a + AED}{AT_c} \\ Risk = E_c * IUR \\ \end{cases}

Inhalat

 $AED = (ADAF_{<2} * EI$

$$CA_{a} = CS_{src} * TF_{a-vo} \qquad CA_{a} = CS_{src} * TF_{a-part}$$
$$EC_{c} = \frac{CA_{a} * AED}{AT_{c}}$$

Notes: Equations are based on guidance from USEPA RAGS Part A and USEPA RAGS Part F.

Table 7-4 Summary of Exposure Assumptions for On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Parameter			Value	Units	Comments/References
IR ing-s -child	Incidental Soil Ingestion Rate - Child	=	0	mg-soil/day	default assumption for a child is 200 mg-soil/day (WVDEP 2023); however, this parameter was excluded based on the
IR ing-s -adult	Incidental Soil Ingestion Rate - Adult	=	100	mg-soil/day	default assumption for an adult (WVDEP 2023)
SA _{child}	Exposed Surface Area - Soil - Child	=	0	cm²/day	default assumption for a child exposed to soil is 2,373 cm ² /day (WVDEP 2023); however, this parameter was excluded
SA adult	Exposed Surface Area - Soil - Adult	=	6,032	cm²/day	default assumption for an adult exposed to soil (WVDEP 2023)
AF child	Soil Adherence Factor - Child	=	0	mg/cm²	default assumption for a child exposed to soil is 0.2 mg/cm ² (WVDEP 2023); however, this parameter was excluded b
AF adult	Soil Adherence Factor - Adult	=	0.07	mg/cm²	default assumption for an adult exposed to soil (WVDEP 2023)
CF 1	Conversion Factor	=	1.0E-06	kg/mg	
CF 2	Conversion Factor	=	1.0E+03	μg/mg	
FI	Fraction of Daily Total - Soil Ing	=	1	unitless	assumes 100% of daily soil ingestion occurs from soil at the site
FC	Fraction of Daily Total - Soil Derm	=	1	unitless	assumes 100% of daily soil contact occurs from soil at the site
ET	Exposure Time	=	2	hours/day	professional judgement
EF	Exposure Frequency	=	52	days/year	professional judgement; assumes exposure to soil occurs 2 days per week during the warmer months (approximately
ED total	Exposure Duration - Total	=	13	years	professional judgement based on age range of 13-26 years old
ED child	Exposure Duration - Child	=	0	years	default assumption for a child resident is 6 years (WVDEP 2023); however, this parameter was excluded based on the
ED adult	Exposure Duration - Adult	=	13	years	default assumption for an adult resident is 20 years (WVDEP 2023); however, this parameter was modified based on
ED <2	Mutagenic Exposure Duration - Child <2 years	=	0	years	2 years based on age range of 0 to 2 years (WVDEP 2023); however, this age range was excluded for the trespasser
ED 2-6	Mutagenic Exposure Duration - Child 2-6 years	=	0	years	4 years based on age range of 2 to 6 years (WVDEP 2023); however, this age range was excluded for the trespasser
ED >6-16	Mutagenic Exposure Duration - Adult >6-16 years	=	3	years	default age range is 6 to 16 years (WVDEP 2023); however, trespasser only 13-16 years applies to the trespasser
ED >16	Mutagenic Exposure Duration - Adult >16 years	=	10	years	based on age range of 16 to 26 years (WVDEP 2023)
ADAF <2	Age-Dependent Adjustment Factor - Child <2 years	=	10	unitless	based on age range of 0 to 2 years (USEPA 2024)
ADAF 2-6	Age-Dependent Adjustment Factor - Child 2-6 years	=	3	unitless	based on age range of 2 to 6 years (USEPA 2024)
ADAF >6-16	Age-Dependent Adjustment Factor - Adult >6-16 years	=	3	unitless	based on age range of 6 to 16 years (USEPA 2024)
ADAF >16	Age-Dependent Adjustment Factor - Adult >16 years	=	1	unitless	based on age range of 16 to 26 years (USEPA 2024)
BW child	Body Weight - Child	=	15	kg	default assumption for a child is 15 kg (WVDEP 2023); however, this parameter was excluded based on the age range
BW adult	Body Weight - Adult	=	80	kg	default assumption for an adult (WVDEP 2023)
AT (c)	Averaging Time-Carcinogenic (Ing/Derm)	=	25,550	days	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year) (USEPA 1989)
AT (nc) total	Averaging Time-Noncarcinogenic (Ing/Derm) - Total	=	4,745	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (nc) _{child}	Averaging Time-Noncarcinogenic (Ing/Derm) - Child	=	0	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (nc) _{adult}	Averaging Time-Noncarcinogenic (Ing/Derm) - Adult	=	4,745	days	averaging time for a noncarcinogen (ED x 365 days/year) (USEPA 1989)
AT (c)	Averaging Time-Carcinogenic (Inhalation)	=	613,200	hours	averaging time for a carcinogen based on lifetime of 70 years (lifetime in years x 365 days/year x 24 hours/day) (USEF
AT (nc) total	Averaging Time-Noncarcinogenic (Inhalation) - Total	=	113,880	hours	averaging time for a noncarcinogen (ED in years x 365 days/year x 24 hours/day) (USEPA 2009)
IF ing-s (c) child	Ing Intake Factor (Carcinogenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
IF ing-s (C) adult	Ing Intake Factor (Carcinogenic) - Soil - Adult	=	3.31E-08	kg/kg-day	calculated
IF ing-s (c) total	Ing Intake Factor (Carcinogenic) - Soil - Total	=	3.31E-08	kg/kg-day	calculated
AIF ing-s (child)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
AIF _{ing-s} (adult)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Adult	=	4.83E-08	kg/kg-day	calculated
AIF _{ing-s} (total)	Age-Adjusted Ing Intake Factor (Mutagenic) - Soil - Total	=	4.83E-08	kg/kg-day	calculated
IF ing-s (nc) child	Ing Intake Factor (Noncarcinogenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
IF ing-s (nc) adult	Ing Intake Factor (Noncarcinogenic) - Soil - Adult	=	1.78E-07	kg/kg-day	calculated
IF ing-s (nc) total	Ing Intake Factor (Noncarcinogenic) - Soil - Total	=	1.78E-07	kg/kg-day	calculated
AD derm-s (C) child	Absorbed Dose (Carcinogenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
AD _{derm-s} (c) _{adult}	Absorbed Dose (Carcinogenic) - Soil - Adult	=	1.40E-07	kg/kg-day	calculated
AD derm-s (c) total	Absorbed Dose (Carcinogenic) - Soil - Total	=	1.40E-07	kg/kg-day	calculated
AAD _{derm-s} (child)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
AAD _{derm-s} (adult)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Adult	=	2.04E-07	kg/kg-day	calculated
AAD _{derm-s} (total)	Age-Adjusted Absorbed Dose (Mutagenic) - Soil - Total	=	2.04E-07	kg/kg-day	calculated
AD derm-s (nc) child	Absorbed Dose (Noncarcinogenic) - Soil - Child	=	0.00E+00	kg/kg-day	calculated
AD derm-s (nc) adult	Absorbed Dose (Noncarcinogenic) - Soil - Adult	=	7.52E-07	kg/kg-day	calculated
AD derm-s (nc) total	Absorbed Dose (Noncarcinogenic) - Soil - Total	=	7.52E-07	kg/kg-day	calculated
EC _c	Inh Exposure Concentration (Carcinogenic)	=	chem-spec.	unitless	calculated
EC nc	Inh Exposure Concentration (Noncarcinogenic)	=	chem-spec.	unitless	calculated

Table 7-5 Summary of Exposure Assumptions for Trespasser Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

e age range of the trespasser

ed based on the age range of the trespasser

based on the age range of the trespasser

26 weeks; May - Oct)

ne age range of the trespasser n the age range of the trespasser

e of the trespasser

PA 2009)

Parameter			Value	Units	Comments/References
AED	Combined Age-Dependent Adjustment Factor	=	1.98E+03	hours	calculated
CS src	Source Concentration in Soil	=	chem-spec.	mg/kg or μg/kg	measured value
TF	Transfer Factor - Ing/Derm - All Media	=	1	unitless	conservative assumption
TF a-vol	Transfer Factor - Inh (volatiles) - Soil	=	chem-spec.	kg/m ³	calculated using the soil volatilization model from the Soil Screening Guidance (USEPA 2002)
TF a-part	Transfer Factor - Inh (particulates) - Soil		7.35E-10	kg/m ³	default value (1.36E+9 m ³ /kg) ⁻¹ (USEPA 2024)
VF	Volatilization Factor - Groundwater	=	chem-spec.	L/m³	calculated using the groundwater volatilization model (ASTM 2015)
CA a	Concentration in Outdoor Air	=	chem-spec.	µg/m³	calculated value
AAF ing-s	Absorption Adjustment Factor-Soil Ing	=	chem-spec.	mg/mg	chemical - specific
AAF derm-s	Absorption Adjustment Factor-Soil Derm	=	chem-spec.	mg/mg	chemical - specific
I ing-s	Intake for Ingestion of Soil	=	chem-spec.	mg/kg-day	chemical - specific
I derm-s	Intake for Dermal Contact with Soil	=	chem-spec.	mg/kg-day	chemical - specific
CSF o	Oral Cancer Slope Factor	=	chem-spec.	(mg/kg-day)⁻¹	chemical - specific
RfD o	Oral Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
CSF D	Dermal Cancer Slope Factor	=	chem-spec.	(mg/kg-day)⁻¹	chemical - specific
RfD _D	Dermal Reference Dose	=	chem-spec.	mg/kg-day	chemical - specific
IUR	Inhalation Unit Risk	=	chem-spec.	(µg/m³)⁻¹	chemical - specific
RfC	Reference Concentration	=	chem-spec.	(mg/m ³)	chemical - specific

References:

ASTM 2015. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. American Society for Testing and Materials, Designation E1739-95, Reapproved 2015.

National Recreation and Parks Association 2022. 2022 Engagement with Parks Report. National Recreation and Parks Association, September 13, 2022.

USEPA 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A). U.S. Environmental Protection Agency, Office of Emergency and Remedial Response, EPA/540/1-89/002, December 1989.

USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002.

USEPA 2009. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation, EPA/540/R-070/002, OSWER 9285.7-82, January 2009. USEPA 2011. Exposure Factors Handbook: 2011 Edition. U.S. Environmental Protection Agency, September 2011.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

WVDEP 2023. West Virginia Voluntary Remediation Program Guidance Manual, West Virginia Department of Environmental Protection, October 2023.

Table 7-5 Summary of Exposure Assumptions for Trespasser Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Incidental Ingestion of Soil - Non-mutagenic Carcinogens and Noncarcinogens $IF_{ing-s} = \frac{IR_{ing} * CF_1 * FI * EF * ED}{BW * AT}$

$$IF_{ing-s}(total) = IF_{ing-s}(child) + IF_{ing-s}(adult)$$

$$I_{ing-s} = CS_{src} * TF * AAF_{ing-} * IF_{ing-s}$$

$$Risk = I_{ing-s(c)} * CSF_0 \qquad HI = \frac{I_{ing-s(nc)}}{RfD_0}$$

Dermal Contact with Soil - Non-mutagenic Carcinogens and Noncarcinogens

$$AD_{derm-} = \frac{SA * AF * CF_1 * FC * EF * ED}{BW * AT}$$

 AD_{der} (total) = $AD_{derm-s}(child) + AD_{derm-s}(adult)$

$$I_{derm-s} = CS_{src} * TF * AAF_{der} * AD_{derm-s}$$

$$Risk = I_{derm \ s \ (c)} \ * \ CSF_D \qquad \qquad HI = \frac{I_{derm \ -s \ (nc)}}{RfD_D}$$

Inhalation of Constituents Emitted from Soil (Volatiles and Particulates) to Outdoor Air - Non-mutagenic Carcinogens and Noncarcinogens

$$EC = \frac{CA_a * ET * EF * ED}{AT}$$

$$CA_a = CS_{src} * TF_{a-vol} \qquad CA_a = CS_{src} * TF_{a-par}$$

$$Risk = EC_c * IUR \qquad HI = \frac{EC_{nc}}{RfC * CF_2}$$

Equations

Inc

$$AlF_{ing-s}(child) = [(ADAF_{c_2} * EP_{c_2}) + (ADAF_{c_2-s} * EF_{c_2-s})] + \frac{IR_c * FI + CF_s}{BW_c * AT_c}$$

$$AlF_{ing-s}(adult) = [(ADAF_{c_2-s} + EP_{c_2-1s}) + (ADAF_{c_2-s} * EF_{c_2-s})] + \frac{IR_c * FI + CF_s}{BW_c * AT_c}$$

$$AlF_{ing-s}(acult) = [(ADAF_{c_{d-1}} * ED_{c_{d-1}s} * ED_{c_{d-1}s}) + (ADAF_{c_{1}s} * ED_{c_{1}s} * EF_{c_{1}s})] + \frac{IR_c * FI + CF_s}{BW_a + AT_c}$$

$$AlF_{ing-s}(child) = AlF_{ing-}(child) + AlF_{ing-s}(adult)$$

$$I_{ing-s} = CS_{src} * TF * AAF_{ing-s} * AlF_{ing-s}$$

$$Risk = I_{ing-s} * CSF_0$$
erral Contact with Soil - Mutagenic Carcinogens
$$AAD_{derm-s}(child) = [(ADAF_{c_2} * ED_{c_2} * EF_{c_2}) + (ADAF_{c_2-s} * EF_{c_2-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_c * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * ED_{c_{2}} * EF_{c_{2}}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_c * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * ED_{c_{2}} * EF_{c_{2}}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_c * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * ED_{c_{2}} * EF_{c_{2}-s}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_a * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * EF_{c_{2}-s}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_a * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * EF_{c_{2}-s}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_a * AT_c}$$

$$AlF_{derm-s}(adult) = [(ADAF_{c_{2}-s} * EF_{c_{2}-s}) + (ADAF_{c_{2}-s} * EF_{c_{2}-s})] * \frac{SA_c * AF_c * CF_s * FC}{BW_a * AT_c}$$

$$AlF_{derm-s} = CS_{src} * TF * AAF_{derm} * AlF_{derm-s}$$

$$Risk = I_{derm-s} * CSF_0$$
to of Constituents Emitted from Soil (Volatiles and Particulates) to Outdoor Air - Mutagenic Carcinogens
$$Dc_{2} * EF_{c_{2}} * ET_{c_{2}}) + (ADAF_{c_{2}-s} * ET_{c_{2}-s}) + (ADAF_{c_{2}-s} * TF_{a-par}$$

$$EC_c = \frac{CA_a * AED}{AT_c}$$

$$Risk = EC_c + IIR$$

$$Risk = I_{ing-s} * CSF_0$$

De

Edental Ingestion of Soil - Mutagenic Carcinogens

$$AIF_{ingg-s}(child) = [(ADAF_{c2} * EF_{c2}) + (ADAF_{z-6} * EF_{2-6})] + \frac{IR_c * FI * CF_1}{BW_c * AT_c}$$

$$AIF_{ingg-s}(child) = [(ADAF_{c-16} * ED_{2n-16} * EF_{2n-16}) + (ADAF_{2n-6} * EF_{2n-6})] + \frac{IR_a * FI * CF_1}{BW_a * AT_c}$$

$$AIF_{ingg-s}(child) = AIF_{ingg-s}(child) + AIF_{ingg-s}(child)$$

$$I_{ingg-s} = CS_{src} * TF * AAF_{ingg-s} * AIF_{ingg-s}$$

$$Risk = I_{ingg-s} + CSF_0$$

$$MD_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AAD_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AID_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AID_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AID_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-6})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AID_{derm-s}(child) = [(ADAF_{c2} * ED_{c2} * EF_{c2}) + (ADAF_{2-6} * EF_{2-10})] + \frac{SA_c * AF_c * CF_1 * FC}{BW_c * AT_c}$$

$$AID_{derm-s}(child) = [(ADAF_{c2-6} * EF_{2-6}) + (ADAF_{2-6} * EF_{2-10})] + (ADAF_{2-6} * EF_{2-10}) + (ADAF_{2-6} * EF_{2-10})] + (ADAF_{2-6} * EF_{2-10}) + (ADAF_{2-6} * EF_{2-6} * EF_{2-6}) + (ADAF_{2-6} * EF_{2-6} * EF_{2-6}) + (ADAF_{2-6} * EF_{2-6}) +$$

Inhalat

 $AED = (ADAF_{<2} * EL$

$$CA_{a} = CS_{src} * TF_{a-vol} \qquad CA_{a} = CS_{src} * TF_{a-par}$$
$$EC_{c} = \frac{CA_{a} * AED}{AT_{c}}$$

Notes: Equations are based on guidance from USEPA RAGS Part A and USEPA RAGS Part F.

Table 7-5 Summary of Exposure Assumptions for Trespasser Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Table 8-1 Calculation of Risks and Hazard Indices for On-Site Maintenance Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Total HI for Pathway =

1E-01

		Ingestion of Soil									
						Calculation of Risk			Calculation of Hazard Index		
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil <i>EPC</i> s (mg/kg)	Absorption Adjustment Factor for Ingestion AAF _{ing-s} (mg/mg)	Ingestion Intake (Cancer) I _{ing-s} (c) (mg/kg-day)	Oral Cancer Slope Factor for Soil <i>CSF</i> ₀ (mg/kg-day) ⁻¹	Risk from Ingestion of Soil <i>Risk _{ing-s}</i> (unitless)	Ingestion Intake (Noncancer) <i>I _{ing-s}</i> (nc) (mg/kg-day)	Oral Reference Dose for Soil <i>RfD _O</i> (mg/kg-day)	Hazard Index from Ingestion of Soil <i>HI _{ing-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	1	2.9E-06	1.0E+00	2.9E-06	8.2E-06	3.0E-04	2.7E-02
Metals											
Arsenic	No	188.6	1	1.9E+02	0.6	1.0E-05	1.5E+00	1.5E-05	2.8E-05	3.0E-04	9.3E-02

Total Risk for Pathway = 2E-05

Risk-HI Cales - Maint Worker_061324.xls C:\01_Worley\Projects\GEG - Hinton Ice House\HHERA response to comments\Revised HHERA Report\Tables\

Table 8-1 Calculation of Risks and Hazard Indices for On-Site Maintenance Worker Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

		Dermal Contact with Soil									
						Calculation of Risk			Calculation of Hazard Index		
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil <i>EPC s</i> (mg/kg)	Absorption Adjustment Factor for Dermal Contact <i>AAF _{derm-s}</i> (mg/mg)	Dermal Absorbed Dose (Cancer) I _{derm-s} (c) (mg/kg-day)	Dermal Cancer Slope Factor for Soil <i>CSF</i> _D (mg/kg-day) ⁻¹	Risk from Dermal Contact with Soil <i>Risk _{derm-s}</i> (unitless)	Dermal Absorbed Dose (Noncancer) <i>I _{derm-s}</i> (nc) (mg/kg-day)	Dermal Reference Dose for Soil <i>RfD _D</i> (mg/kg-day)	Hazard Index from Dermal Contact with Soil <i>HI _{derm-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	0.13	1.6E-06	1.0E+00	1.6E-06	4.5E-06	3.0E-04	1.5E-02
Metals	No	188.6	1	1.05+02	0.02	2 15 06	1 55100	2.25.06	E OE OG	2.05.04	2.05.02
AISEIIL	1 110	100.0	1 1	1.3C+UZ	0.03	L 7.TE-00	1.3E+00	J 3.2E-00	3.9E-00	J 3.0E-04	2.0E-02

-06 Total HI for Pathway =

3E-02

Total Risk for Pathway = 5E-06
Table 8-1

 Calculation of Risks and Hazard Indices for On-Site Maintenance Worker

 Human Health and Ecological Risk Assessment

 Former Hinton Ice House

 Hinton, West Virginia

				Inhalatior	of Particula	tes Emitted t	o Outdoor Aiı	r from Soil		
						Calculation of Ris	k	Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (µg/kg)	Transfer Factor <i>TF _{a-part}</i> (kg/m³)	Outdoor Air Concentration <i>CA _a</i> (µg/m³)	Exposure Concentration (Cancer) <i>EC _c</i> (µg/m³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ³) ⁻¹	Risk from Inhal. of Part. Em. from Soil <i>Risk _{inhal-p}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC _{nc}</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Part. Em. from Soil <i>HI _{inhal-p}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)										
Benzo(a)pyrene	Yes	33,232	7.4E-10	2.4E-05	2.9E-07	6.0E-04	1.7E-10	8.0E-07	2.0E-06	4.0E-04
Metals										
Arsenic	No	188,600	7.4E-10	1.4E-04	1.6E-06	4.3E-03	7.0E-09	4.6E-06	1.5E-05	3.0E-04

Total HI for Pathway = 7E-04

Total Risk for Pathway = 7E-09

Risk-HI Calcs - Maint Worker_061324.xls C:\01_Worley\Projects\GEG - Hinton Ice House\HHERA response to comments\Revised HHERA Report\Tables\

Total HI for Pathway =

4E-01

						Ingestic	on of Soil				
							Calculation of Ris	k	Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil <i>EPC</i> s (mg/kg)	Absorption Adjustment Factor for Ingestion AAF _{ing-s} (mg/mg)	Ingestion Intake (Cancer) I _{ing-s} (c) (mg/kg-day)	Oral Cancer Slope Factor for Soil <i>CSF</i> ₀ (mg/kg-day) ⁻¹	Risk from Ingestion of Soil <i>Risk _{ing-s}</i> (unitless)	Ingestion Intake (Noncancer) <i>I _{ing-s}</i> (nc) (mg/kg-day)	Oral Reference Dose for Soil <i>RfD _O</i> (mg/kg-day)	Hazard Index from Ingestion of Soil <i>HI _{ing-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	1	1.0E-05	1.0E+00	1.0E-05	2.8E-05	3.0E-04	9.5E-02
Metals	N	189.6		1.05+02	0.6	2 55 05	1.55.00	5 35 05	0.75.05	2.05.04	2.25.01
Arsenic	I NO	100.0	1 1	1.96+02	0.6	J 3.5E-05	1.5E+00	5.2E-05	9.7E-05	3.0E-04	3.2E-01

Total Risk for Pathway = 6E-05

						Dermal Con	tact with Soil				
							Calculation of Risl	(Calc	ulation of Hazard I	ndex
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS</i> _{src} (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil EPC _s (mg/kg)	Absorption Adjustment Factor for Dermal Contact <i>AAF _{derm-s}</i> (mg/mg)	Dermal Absorbed Dose (Cancer) I _{derm-s} (c) (mg/kg-day)	Dermal Cancer Slope Factor for Soil <i>CSF</i> _D (mg/kg-day) ⁻¹	Risk from Dermal Contact with Soil <i>Risk _{derm-s}</i> (unitless)	Dermal Absorbed Dose (Noncancer) <i>I _{derm-s}</i> (nc) (mg/kg-day)	Dermal Reference Dose for Soil <i>RfD _D</i> (mg/kg-day)	Hazard Index from Dermal Contact with Soil <i>HI _{derm-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	0.13	5.6E-06	1.0E+00	5.6E-06	1.6E-05	3.0E-04	5.2E-02
Metals											
Arsenic	No	188.6	1	1.9E+02	0.03	7.3E-06	1.5E+00	1.1E-05	2.1E-05	3.0E-04	6.8E-02

Total HI for Pathway =

1E-01

Total Risk for Pathway = 2E-05

Risk-HI Calcs - Outdoor Worker_061324.xls C:\01_Worley\Projects\GEG - Hinton Ice House\HHERA response to comments\Revised HHERA Report\Tables\

				Inhalatior	of Particula	tes Emitted t	o Outdoor Aiı	r from Soil		
						Calculation of Risl	<	Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (µg/kg)	Transfer Factor <i>TF _{a-part}</i> (kg/m³)	Outdoor Air Concentration <i>CA _a</i> (µg/m ³)	Exposure Concentration (Cancer) <i>EC _c</i> (µg/m ³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ^{3)⁻¹}	Risk from Inhal. of Part. Em. from Soil <i>Risk _{inhal-p}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC nc</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Part. Em. from Soil HI _{inhal-p} (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)										
Benzo(a)pyrene	Yes	33,232	7.4E-10	2.4E-05	2.0E-06	6.0E-04	1.2E-09	5.6E-06	2.0E-06	2.8E-03
Metals										
Arsenic	No	188,600	7.4E-10	1.4E-04	1.1E-05	4.3E-03	4.9E-08	3.2E-05	1.5E-05	2.1E-03

Total HI for Pathway = 5E-03

Total Risk for Pathway = 5E-08

Total HI for Pathway =

2E-01

						Ingestic	on of Soil				
							Calculation of Ris	k	Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS</i> _{src} (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil <i>EPC</i> s (mg/kg)	Absorption Adjustment Factor for Ingestion AAF _{ing-s} (mg/mg)	Ingestion Intake (Cancer) I _{ing-s} (c) (mg/kg-day)	Oral Cancer Slope Factor for Soil <i>CSF</i> ₀ (mg/kg-day) ⁻¹	Risk from Ingestion of Soil <i>Risk _{ing-s}</i> (unitless)	Ingestion Intake (Noncancer) <i>I _{ing-s}</i> (nc) (mg/kg-day)	Oral Reference Dose for Soil <i>RfD _O</i> (mg/kg-day)	Hazard Index from Ingestion of Soil <i>HI _{ing-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	1	1.6E-07	1.0E+00	1.6E-07	1.2E-05	3.0E-04	3.9E-02
Metals											
Arsenic	No	188.6	1	1.9E+02	0.6	5.5E-07	1.5E+00	8.2E-07	4.0E-05	3.0E-04	1.3E-01

Total Risk for Pathway = 1E-06

Risk-HI Cales - Const Worker_061324.xls C:\01_Worley\Projects\GEG - Hinton Ice House\HHERA response to comments\Revised HHERA Report\Tables\

						Dermal Con	tact with Soil					
							Calculation of Ris	k	Calc	Calculation of Hazard Index		
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS</i> _{src} (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil EPC _s (mg/kg)	Absorption Adjustment Factor for Dermal Contact AAF _{derm-s} (mg/mg)	Dermal Absorbed Dose (Cancer) I _{derm-s} (c) (mg/kg-day)	Dermal Cancer Slope Factor for Soil <i>CSF</i> _D (mg/kg-day) ⁻¹	Risk from Dermal Contact with Soil <i>Risk _{derm-s}</i> (unitless)	Dermal Absorbed Dose (Noncancer) I _{derm-s} (nc) (mg/kg-day)	Dermal Reference Dose for Soil <i>RfD _D</i> (mg/kg-day)	Hazard Index from Dermal Contact with Soil <i>HI _{derm-s}</i> (unitless)	
Polycyclic Aromatic Hydrocarbons (PAHs)	Voc	22.2	1	2.25.01	0.13	C 75 00	1.05.00	6.75.00	4.05.00	2.05.04	1.05.00	
Benzo(a)pyrene	Tes	33.2	1	3.3E+01	0.13	6.7E-08	1.0E+00	6.7E-08	4.9E-06	3.0E-04	1.6E-02	
Metals												
Arsenic	No	188.6	1	1.9E+02	0.03	8.8E-08	1.5E+00	1.3E-07	6.4E-06	3.0E-04	2.1E-02	

2E-07

Total HI for Pathway = 4E-02

Total Risk for Pathway = 2E-0

		Inhalation of Particulates Emitted to Outdoor Air from Soil								
						Calculation of Risl	(Calc	ulation of Hazard I	index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (µg/kg)	Transfer Factor <i>TF _{a-part}</i> (kg/m³)	Outdoor Air Concentration <i>CA _a</i> (µg/m³)	Exposure Concentration (Cancer) <i>EC _c</i> (µg/m³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ³) ⁻¹	Risk from Inhal. of Part. Em. from Soil <i>Risk _{inhal-p}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC _{nc}</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Part. Em. from Soil <i>HI _{inhal-p}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)										
Benzo(a)pyrene	Yes	33,232	7.4E-10	2.4E-05	9.6E-09	6.0E-04	5.7E-12	7.0E-07	2.0E-06	3.5E-04
Metals										
Arsenic	No	188,600	7.4E-10	1.4E-04	5.4E-08	4.3E-03	2.3E-10	4.0E-06	1.5E-05	2.6E-04

Total HI for Pathway = 6E-04

Total Risk for Pathway = 2E-10

Risk-HI Calcs - Const Worker_061324.xls C:101_Worley\Projects\GEG - Hinton Ice House\HHERA response to comments\Revised HHERA Report\Tables\

						Ingestio	n of Soil				
							Calculation of Risl	(Calci	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil EPC _s (mg/kg)	Absorption Adjustment Factor for Ingestion AAF _{ing-s} (mg/mg)	Ingestion Intake (Cancer) I _{ing-s} (c) (mg/kg-day)	Oral Cancer Slope Factor for Soil <i>CSF</i> ₀ (mg/kg-day) ⁻¹	Risk from Ingestion of Soil <i>Risk _{ing-s}</i> (unitless)	Ingestion Intake (Noncancer) <i>I _{ing-s}</i> (nc) (mg/kg-day)	Oral Reference Dose for Soil <i>RfD _O</i> (mg/kg-day)	Hazard Index from Ingestion of Soil <i>HI _{ing-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)anthracene	Yes	38.7	1	3.9E+01	1	3.8E-05	1.0E-01	3.8E-06	8.0E-05		
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	1	3.2E-05	1.0E+00	3.2E-05	6.9E-05	3.0E-04	2.3E-01
Benzo(b)fluoranthene	Yes	43.4	1	4.3E+01	1	4.2E-05	1.0E-01	4.2E-06	9.0E-05		
Benzo(k)fluoranthene	Yes	5.7	1	5.7E+00	1	5.6E-06	1.0E-02	5.6E-08	1.2E-05		
Dibenzo(a,h)anthracene	Yes	1.5	1	1.5E+00	1	1.5E-06	1.0E+00	1.5E-06	3.1E-06		
Indeno(1,2,3-cd)pyrene	Yes	6.2	1	6.2E+00	1	6.0E-06	1.0E-01	6.0E-07	1.3E-05		
Metals											
Antimony	No	28.9	1	2.9E+01	1	6.2E-06			6.0E-05	4.0E-04	1.5E-01
Arsenic	No	188.6	1	1.9E+02	0.6	2.4E-05	1.5E+00	3.6E-05	2.4E-04	3.0E-04	7.8E-01
Iron	No	59,016	1	5.9E+04	1	1.3E-02			1.2E-01	7.0E-01	1.8E-01
Polychlorinated Biphenyls (PCBs)											
Aroclor-1254	No	0.35	1	3.5E-01	1	7.5E-08	2.0E+00	1.5E-07	7.3E-07	2.0E-05	3.6E-02
Notes:											

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 8E-05

Total HI for Pathway = 1E+00

		-									
						Dermal Con	tact with Soil				
							Calculation of Risl	(Calc	ulation of Hazard I	ndex
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS</i> _{src} (mg/kg)	Transfer Factor <i>TF</i> ₅ (unitless)	Exposure Point Concentration for Soil <i>EPC</i> s (mg/kg)	Absorption Adjustment Factor for Dermal Contact <i>AAF _{derm-s}</i> (mg/mg)	Dermal Absorbed Dose (Cancer) I _{derm-s} (c) (mg/kg-day)	Dermal Cancer Slope Factor for Soil <i>CSF</i> _D (mg/kg-day) ⁻¹	Risk from Dermal Contact with Soil <i>Risk _{derm-s}</i> (unitless)	Dermal Absorbed Dose (Noncancer) <i>I _{derm-s}</i> (nc) (mg/kg-day)	Dermal Reference Dose for Soil <i>RfD _D</i> (mg/kg-day)	Hazard Index from Dermal Contact with Soil <i>HI _{derm-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)anthracene	Yes	38.7	1	3.9E+01	0.13	3.9E-05	1.0E-01	3.9E-06	8.2E-05		
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	0.13	3.4E-05	1.0E+00	3.4E-05	7.0E-05	3.0E-04	2.3E-01
Benzo(b)fluoranthene	Yes	43.4	1	4.3E+01	0.13	4.4E-05	1.0E-01	4.4E-06	9.2E-05		
Benzo(k)fluoranthene	Yes	5.7	1	5.7E+00	0.13	5.8E-06	1.0E-02	5.8E-08	1.2E-05		
Dibenzo(a,h)anthracene	Yes	1.5	1	1.5E+00	0.13	1.5E-06	1.0E+00	1.5E-06	3.2E-06		
Indeno(1,2,3-cd)pyrene	Yes	6.2	1	6.2E+00	0.13	6.3E-06	1.0E-01	6.3E-07	1.3E-05		
Metals											
Antimony	No	28.9	1	2.9E+01	0	0.0E+00			0.0E+00	6.0E-05	
Arsenic	No	188.6	1	1.9E+02	0.03	1.1E-05	1.5E+00	1.7E-05	9.2E-05	3.0E-04	3.1E-01
Iron	No	59,016	1	5.9E+04	0	0.0E+00			0.0E+00	7.0E-01	
Polychlorinated Biphenyls (PCBs)											1
Aroclor-1254	No	0.35	1	3.5E-01	0.14	9.9E-08	2.0E+00	2.0E-07	8.0E-07	2.0E-05	4.0E-02
Notes:											

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 6E-05

Total HI for Pathway = 6E-01

				Inha	alation of Che	emicals Volat	ilized to Out	door Air from	Soil		
							Calculation of Risl	ĸ	Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil CS _{src} (µg/kg)	Soil Saturation Limit C _{sat} (µg/kg)	Transfer Factor <i>TF _{a-vol}</i> (kg/m ³)	Outdoor Air Concentration <i>CA a</i> (µg/m³)	Exposure Concentration (Cancer) <i>EC c</i> (µg/m³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ³) ⁻¹	Risk from Inhal. of Chem. Vol. from Soil <i>Risk _{inhal-v}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC_{nc}</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Chem. Vol. from Soil <i>HI _{inhal-v}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)anthracene	Yes	38,662		1.7E-07	6.6E-03	1.2E-04	6.0E-05	7.2E-09	1.2E-04		
Benzo(a)pyrene	Yes										
Benzo(b)fluoranthene	Yes										
Benzo(k)fluoranthene	Yes										
Dibenzo(a,h)anthracene	Yes										
Indeno(1,2,3-cd)pyrene	Yes										
Metals											
Antimony	No										
Arsenic	No										
Iron	No										
Polychlorinated Biphenyls (PCBs)											
Aroclor-1254	No	350		8.9E-07	3.1E-04	2.1E-06	5.7E-04	1.2E-09	5.5E-06		
Notes:		Note ¹ CA ₂ is calc	ulated using minin	num of CS *TF	or C *TF						

Shaded cells utilize mutagenic equations.

src -_{a-vol} 0 C sat F a-vol

Total Risk for Pathway = 8E-09 Total HI for Pathway = 0E+00

			Inhalation of Particulates Emitted to Outdoor Air from Soil Source oncentration for Soil Calculation of Particulates Emitted to Outdoor Air from Soil Source oncentration for Soil Outdoor Air Concentration (Cancer) Calculation of Risk Calculation of Risk Source oncentration for Soil Outdoor Air Transfer Factor Outdoor Air Concentration (Cancer) Exposure Concentration (Cancer) Risk from Inhal. of Part. Em. from NiUR Exposure Oncentration (Noncancer) Hazard Index from Inhal. of Part. Em. from Soil CS src TF a-part (kg/m ³) CA a (µg/m ³) EC c (µg/m ³) ⁻¹ IUR (µg/m ³) ⁻¹ Exposure (µg/m ³) Risk inhal-p (µg/m ³) EC nc (µg/m ³) Ric HI inhal-p (µg/m ³)									
						Calculation of Risl	(Calc	ulation of Hazard I	ndex		
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (µg/kg)	Transfer Factor <i>TF _{o-part}</i> (kg/m ³)	Outdoor Air Concentration <i>CA a</i> (µg/m³)	Exposure Concentration (Cancer) <i>EC _c</i> (µg/m³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ³⁾⁻¹	Risk from Inhal. of Part. Em. from Soil <i>Risk _{inhal-p}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC nc</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Part. Em. from Soil <i>HI _{inhal-p}</i> (unitless)		
Polycyclic Aromatic Hydrocarbons (PAHs)												
Benzo(a)anthracene	Yes											
Benzo(a)pyrene	Yes	33,232	7.4E-10	2.4E-05	4.5E-07	6.0E-04	2.7E-10	4.3E-07	2.0E-06	2.2E-04		
Benzo(b)fluoranthene	Yes	43,441	7.4E-10	3.2E-05	5.8E-07	6.0E-05	3.5E-11	5.7E-07				
Benzo(k)fluoranthene	Yes	5,743	7.4E-10	4.2E-06	7.7E-08	6.0E-06	4.6E-13	7.5E-08				
Dibenzo(a,h)anthracene	Yes	1,516	7.4E-10	1.1E-06	2.0E-08	6.0E-04	1.2E-11	2.0E-08				
Indeno(1,2,3-cd)pyrene	Yes	6,233	7.4E-10	4.6E-06	8.4E-08	6.0E-05	5.0E-12	8.2E-08				
Metals												
Antimony	No	28,920	7.4E-10	2.1E-05	1.4E-07			3.8E-07	3.0E-04	1.3E-06		
Arsenic	No	188,600	7.4E-10	1.4E-04	9.2E-07	4.3E-03	3.9E-09	2.5E-06	1.5E-05	1.6E-04		
Iron	No	59,016,000	7.4E-10	4.3E-02	2.9E-04			7.7E-04				
Polychlorinated Biphenyls (PCBs) Aroclor-1254	No											

Notes:

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 4E-09

Total HI for Pathway = 4E-04

		Ingestion of Soil									
						ingestio	n of Soli				
							Calculation of Risl	c c c c c c c c c c c c c c c c c c c	Calco	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent?	Source Concentration for Soil CS _{src}	Transfer Factor TF _s	Exposure Point Concentration for Soil EPC s	Absorption Adjustment Factor for Ingestion AAF ing-s	Ingestion Intake (Cancer) I _{ina-s} (c)	Oral Cancer Slope Factor for Soil <i>CSF o</i>	Risk from Ingestion of Soil <i>Risk _{ing-s}</i>	Ingestion Intake (Noncancer) <i>I _{ino-s}</i> (nc)	Oral Reference Dose for Soil <i>RfD o</i>	Hazard Index from Ingestion of Soil <i>HI _{ing-s}</i>
	(Yes or No)	(mg/kg)	(unitless)	(mg/kg)	(mg/mg)	(mg/kg-day)	(mg/kg-day) ⁻¹	(unitless)	(mg/kg-day)	(mg/kg-day)	(unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)											
Benzo(a)anthracene	Yes										
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	1	1.6E-06	1.0E+00	1.6E-06	5.9E-06	3.0E-04	2.0E-02
Benzo(b)fluoranthene	Yes										
Benzo(k)fluoranthene	Yes										
Dibenzo(a,h)anthracene	Yes										
Indeno(1,2,3-cd)pyrene	Yes										
Metals											
Antimony	No										
Arsenic	No	188.6	1	1.9E+02	0.6	3.7E-06	1.5E+00	5.6E-06	2.0E-05	3.0E-04	6.7E-02
Iron	No										
Polychlorinated Biphenyls (PCBs)											
Aroclor-1254	No										

Notes:

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 7E-06

Total HI for Pathway = 9E-02

						Dermal Cont	tact with Soil				
							Calculation of Risk	(Calc	ulation of Hazard	Index
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (mg/kg)	Transfer Factor <i>TF s</i> (unitless)	Exposure Point Concentration for Soil <i>EPC</i> s (mg/kg)	Absorption Adjustment Factor for Dermal Contact AAF _{derm-s} (mg/mg)	Dermal Absorbed Dose (Cancer) I _{derm-s} (c) (mg/kg-day)	Dermal Cancer Slope Factor for Soil <i>CSF</i> _D (mg/kg-day) ⁻¹	Risk from Dermal Contact with Soil <i>Risk _{derm-s}</i> (unitless)	Dermal Absorbed Dose (Noncancer) <i>I _{derm-s}</i> (nc) (mg/kg-day)	Dermal Reference Dose for Soil <i>RfD _D</i> (mg/kg-day)	Hazard Index from Dermal Contact with Soil <i>HI _{derm-s}</i> (unitless)
Polycyclic Aromatic Hydrocarbons (PAHs)	İ										
Benzo(a)anthracene	Yes										
Benzo(a)pyrene	Yes	33.2	1	3.3E+01	0.13	8.8E-07	1.0E+00	8.8E-07	3.2E-06	3.0E-04	1.1E-02
Benzo(b)fluoranthene	Yes										
Benzo(k)fluoranthene	Yes										
Dibenzo(a,h)anthracene	Yes										
Indeno(1,2,3-cd)pyrene	Yes										
Metals											
Antimony	No										
Arsenic	No	188.6	1	1.9E+02	0.03	7.9E-07	1.5E+00	1.2E-06	4.3E-06	3.0E-04	1.4E-02
Iron	No										
Polychlorinated Biphenyls (PCBs)											
Aroclor-1254	No										

Notes:

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 2E-06

Total HI for Pathway = 3E-02

			Inhalation of Particulates Emitted to Outdoor Air from Soil									
						Calculation of Risl	(Calculation of Hazard Index				
Constituent of Concern	Mutagenic Constituent? (Yes or No)	Source Concentration for Soil <i>CS _{src}</i> (µg/kg)	Transfer Factor <i>TF _{a-part}</i> (kg/m³)	Outdoor Air Concentration <i>CA a</i> (µg/m³)	Exposure Concentration (Cancer) <i>EC _c</i> (µg/m ³)	Inhalation Unit Risk Factor <i>IUR</i> (µg/m ³⁾⁻¹	Risk from Inhal. of Part. Em. from Soil <i>Risk _{inhal-p}</i> (unitless)	Exposure Concentration (Noncancer) <i>EC nc</i> (µg/m ³)	Reference Concentration <i>RfC</i> (mg/m ³)	Hazard Index from Inhal. of Part. Em. from Soil <i>HI _{inhal-p}</i> (unitless)		
Polycyclic Aromatic Hydrocarbons (PAHs)												
Benzo(a)anthracene	Yes											
Benzo(a)pyrene	Yes	33,232	7.4E-10	2.4E-05	7.9E-08	6.0E-04	4.7E-11	2.9E-07	2.0E-06	1.4E-04		
Benzo(b)fluoranthene	Yes											
Benzo(k)fluoranthene	Yes											
Dibenzo(a,h)anthracene	Yes											
Indeno(1,2,3-cd)pyrene	Yes											
Metals												
Antimony	No											
Arsenic	No	188,600	7.4E-10	1.4E-04	3.1E-07	4.3E-03	1.3E-09	1.6E-06	1.5E-05	1.1E-04		
Iron	No											
Polychlorinated Biphenyls (PCBs)												
Aroclor-1254	No											

Notes:

Shaded cells utilize mutagenic equations.

Total Risk for Pathway = 1E-09

Total HI for Pathway = 3E-04

Table 8-6 Summary of Risks and Hazard Indices for All Receptors Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

RIS	KS –

		Soil							
Receptor	Incidental Ingestion	Dermal Contact	Inhalation of Volatiles (Ambient/ Trench Air)	Inhalation of Particulates (Ambient/ Trench Air)	Total Soil	Total Risk			
On-Site									
Maintenance Worker	2E-05	5E-06		7E-09	2E-05	2E-05			
Outdoor Worker	6E-05	2E-05		5E-08	8E-05	8E-05			
Construction Worker	1E-06	2E-07		2E-10	1E-06	1E-06			
Recreational User	8E-05	6E-05	8E-09	4E-09	1E-04	1E-04			
Trespasser	7E-06	2E-06		1E-09	9E-06	9E-06			

Hazard Indices

		Direct Contact							
Receptor	Incidental Ingestion	Dermal Contact	Inhalation of Volatiles (Ambient/ Trench Air)	Inhalation of Particulates (Ambient/ Trench Air)	Total Soil	Total Hazard Index			
On-Site									
Maintenance Worker	1E-01	3E-02		7E-04	2E-01	2E-01			
Outdoor Worker	4E-01	1E-01		5E-03	5E-01	5E-01			
Construction Worker	2E-01	4E-02		6E-04	2E-01	2E-01			
Recreational User	1E+00	6E-01	[1]	4E-04	2E+00	2E+00			
Trespasser	9E-02	3E-02		3E-04	1E-01	1E-01			

Notes:

Shaded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁶ or the hazard index benchmark of 1.0 for residential receptors.

Bolded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁵ or the hazard index benchmark of 1.0 for commercial/industrial receptors.

"---" indicates exposure pathway was not retained for this receptor.

[1] There are no chronic reference concentrations available for the retained COC for the inhalation of volatiles exposure pathway. Therefore, a hazard quotient was not calculated.

On-Site Maintenance Worker

Direct Contact COC	Calculated Risks and HQs for Soil Exposure Pathways in Quantitative Risk Assessment										
	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Particulates				
Benzo(a)pyrene	33.2	2.9E-06	1.6E-06	1.7E-10	2.7E-02	1.5E-02	4.0E-04				
Arsenic	188.6	1.5E-05	3.2E-06	7.0E-09	9.3E-02	2.0E-02	3.0E-04				
Total Risk/HI per pathw	ay	1.8E-05	4.8E-06	7.2E-09	1.2E-01	3.5E-02	7.1E-04				

Total Risk = 2E-05

3E-06

Total HI = 2E-01

2E-02

Total HI =

Direct Contact COC	Ratioed Risks and HQs for Soil Exposure Pathways										
	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Particulates				
Benzo(a)pyrene	2.407	2.1E-07	1.2E-07	1.2E-11	2.0E-03	1.1E-03	2.9E-05				
Arsenic	23.92	1.9E-06	4.0E-07	8.9E-10	1.2E-02	2.5E-03	3.9E-05				
Total Risk/HI per pathway		2.1E-06	5.2E-07	9.0E-10	1.4E-02	3.6E-03	6.8E-05				

Total Risk =

Notes:

COC - constituent of concern

HI - hazard index

HQ - hazard quotient

Shaded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁵ or the hazard index benchmark of 1.0 for commercial/industrial receptors.

On-Site Outdoor Worker

Direct Contact COC	Calculated Risks and HQs for Soil Exposure Pathways in Quantitative Risk Assessment										
	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Particulates				
Benzo(a)pyrene	33.2	1.0E-05	5.6E-06	1.2E-09	9.5E-02	5.2E-02	2.8E-03				
Arsenic	188.6	5.2E-05	1.1E-05	4.9E-08	3.2E-01	6.8E-02	2.1E-03				
Total Risk/HI per pathw	ay	6.2E-05	1.7E-05	5.0E-08	4.2E-01	1.2E-01	4.9E-03				

Total Risk = 8E-05

Total HI = 5E-01

		Ratioed Risks and HQs for Soil Exposure Pathways										
Direct Contact COC	Surface Soil Source	Risk - Incidental	Risk - Dermal	Risk - Inhalation	HQ - Incidental	HQ - Dermal	HQ - Inhalation of					
	Concentration (mg/kg)	Ingestion	Contact	of Particulates	Ingestion	Contact	Particulates					
Benzo(a)pyrene	2.407	7.4E-07	4.0E-07	8.7E-11	6.9E-03	3.8E-03	2.0E-04					
Arsenic	23.92	6.6E-06	1.4E-06	6.2E-09	4.1E-02	8.7E-03	2.7E-04					
Total Risk/HI per pathway		7.3E-06	1.8E-06	6.3E-09	4.8E-02	1.2E-02	4.7E-04					
							-					
			Total Risk =	9E-06		Total HI =	6E-02					

Notes:

COC - constituent of concern

HI - hazard index

HQ - hazard quotient

Shaded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁵ or the hazard index benchmark of 1.0 for commercial/industrial receptors.

Trespasser

Direct Contact COC	Calculated Risks and HQs for Soil Exposure Pathways in Quantitative Risk Assessment										
	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Particulates				
Benzo(a)pyrene	33.2	1.6E-06	8.8E-07	4.7E-11	2.0E-02	1.1E-02	1.4E-04				
Arsenic	188.6	5.6E-06	1.2E-06	1.3E-09	6.7E-02	1.4E-02	1.1E-04				
Total Risk/HI per pathw	ay	7.2E-06	2.1E-06	1.4E-09	8.7E-02	2.5E-02	2.5E-04				

Total Risk = 9E-06

1E-06

Total HI = 1E-01

Direct Contact COC	Ratioed Risks and HQs for Soil Exposure Pathways										
	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Particulates				
Benzo(a)pyrene	2.407	1.2E-07	6.4E-08	3.4E-12	1.4E-03	7.8E-04	1.1E-05				
Arsenic	23.92	7.1E-07	1.5E-07	1.7E-10	8.5E-03	1.8E-03	1.4E-05				
Total Risk/HI per pathway		8.3E-07	2.1E-07	1.7E-10	9.9E-03	2.6E-03	2.4E-05				

Total Risk =

Total HI = 1E-02

Notes:

COC - constituent of concern

HI - hazard index

HQ - hazard quotient

Shaded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁶ or the hazard index benchmark of 1.0 for residential receptors.

On-Site Recreational User

Diverse On other 4 000	Calculated Risks and HQs for Soil Exposure Pathways in Quantitative Risk Assessment										
Direct Contact COC	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Volatiles	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Volatiles	HQ - Inhalation of Particulates		
Benzo(a)anthracene	38.7	3.8E-06	3.9E-06	7.2E-09							
Benzo(a)pyrene	33.2	3.2E-05	3.4E-05		2.7E-10	2.3E-01	2.3E-01		2.2E-04		
Benzo(b)fluoranthene	43.4	4.2E-06	4.4E-06		3.5E-11						
Benzo(k)fluoranthene	5.7	5.6E-08	5.8E-08		4.6E-13						
Dibenzo(a,h)anthracene	1.5	1.5E-06	1.5E-06		1.2E-11						
Indeno(1,2,3-cd)pyrene	6.2	6.0E-07	6.3E-07		5.0E-12						
Antimony	28.9					1.5E-01			1.3E-06		
Arsenic	188.6	3.6E-05	1.7E-05		3.9E-09	7.8E-01	3.1E-01		1.6E-04		
Iron	59,016					1.8E-01					
Aroclor-1254	0.35	1.5E-07	2.0E-07	1.2E-09		3.6E-02	4.0E-02				
Total Risk/HI per pathwa	ay	7.9E-05	6.2E-05	8.4E-09	4.3E-09	1.4E+00	5.8E-01		3.8E-04		

Total Risk = 1E-04

Total HI = 2E+00

Diment Company 2000	Ratioed Risks and HQs for Soil Exposure Pathways										
Direct Contact COC	Surface Soil Source Concentration (mg/kg)	Risk - Incidental Ingestion	Risk - Dermal Contact	Risk - Inhalation of Volatiles	Risk - Inhalation of Particulates	HQ - Incidental Ingestion	HQ - Dermal Contact	HQ - Inhalation of Volatiles	HQ - Inhalation of Particulates		
Benzo(a)anthracene	2.3	2.3E-07	2.4E-07	4.3E-10							
Benzo(a)pyrene	2.4	2.3E-06	2.4E-06		1.9E-11	1.7E-02	1.7E-02		1.6E-05		
Benzo(b)fluoranthene	3.5	3.4E-07	3.6E-07		2.8E-12						
Benzo(k)fluoranthene	1.1	1.1E-08	1.1E-08		9.1E-14						
Dibenzo(a,h)anthracene	0.3	3.4E-07	3.5E-07		2.8E-12						
Indeno(1,2,3-cd)pyrene	1.5	1.5E-07	1.5E-07		1.2E-12						
Antimony	11.7					6.1E-02			5.1E-07		
Arsenic	23.9	4.6E-06	2.2E-06		5.0E-10	9.9E-02	3.9E-02		2.1E-05		
Iron	34,863					1.0E-01					
Aroclor-1254	0.35	1.5E-07	2.0E-07	1.2E-09		3.6E-02	4.0E-02				
Total Risk/HI per pathway		8.1E-06	5.9E-06	1.6E-09	5.3E-10	3.2E-01	9.6E-02		3.7E-05		

Total Risk = 1E-05

Total HI = 4E-01

Notes:

COC - constituent of concern

HI - hazard index

HQ - hazard quotient

Shaded values indicate an exceedance of the WVDEP risk benchmark of 1x10⁻⁶ or the hazard index benchmark of 1.0 for residential receptors.

Appendix A – Adult Lead Model

Calculations of Preliminary Remediation Goals (PRGs) for Soil in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee Version date 06/14/2017

EDIT RED CELLS

Variable	Description of Variable	Units	GSDi and PbBo from Analysis of NHANES 2009- 2014	GSDi and PbBo from Analysis of NHANES 2007- 2010	GSDi and PbBo from Analysis of NHANES 1999- 2004	GSDi and PbBo from Analysis of NHANES III (Phases 1&2)
PbB _{fetal} , 0.95	Target PbB in fetus (e.g., 2-8 µg/dL)	µg/dL	3.5	3.5	3.5	3.5
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL	0.4	0.4	0.4	0.4
		per ug/dav				
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IRs	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100	0.100	0.100	0.100
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{s, D}	Exposure frequency (same for soil and dust)	days/yr	270	270	270	270
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PRG in Soil for no more than 5	ppm	247	260	135	-99	

Page 1 of 1

selected standard

Appendix B – Ecological Checklist

Checklist to Determine Applicable Remediation Standards

Part 1: Ecological Standards

STEP	STEP 1: Determine Whether a De Minimis Ecological Screening Evaluation is Appropriate for the Site								
1.1	Are there any undeveloped terrestrial areas on or adjacent to the site (e.g., areas that are not under intensive landscape or agricultural control)?	□ Yes	🖄 No						
1.2	Are there any potential wetlands (including vernal pools) on or adjacent to the site?	□ Yes	X No						
1.3	Are there any surface water bodies (i.e., lotic or lentic habitat) on or adjacent to the site?	□ Yes	🛛 No						
1.4	Are there any terrestrial, wetland, or aquatic habitats off-site, but situated downstream, downwind, or downgradient from the site that may be affected by site-related stressors?	□ Yes	🛛 No						
1.5	Are there any projected land uses for the site that would result in undeveloped areas, wetland habitat, lotic habitat, or lentic habitat?	□ Yes	🖄 No						
If "Yes	If "Yes" to any: A complete exposure pathway may exist for potential ecological receptors of concern. Proceed to Step 2.								

If "Yes" to any: A complete exposure pathway may exist for potential ecological receptors of concern. Proceed to Step 2. If "No" to all: No further ecological evaluation is required. File this completed form with the Site Assessment Report.

STEP	2: Identify any Readily Apparent Harm or Exceedances of Surface Water Quality Standards						
2.1	Have there been any incidents where harm to wildlife attributable to contaminants originating from the site has been readily apparent?	□ Yes	🗆 No				
	If "Yes": Proceed to Question 2.2. If "No": Skip to Question 2.3.						
2.2	Has the cause of such harm been eliminated?	□ Yes	□ No				
If "Yes": Briefly describe the action taken and complete the rest of the checklist. If "No": Proceed directly to the remedy evaluation or, alternately, proceed with a determination of a Unit Site-Specific Ecological Standard, as described in the VRP Guidance Manual, prior to implementation of remedy. File this form with the Site Assessment Report. Action Taken:							
2.3	Is the site contributing to exceedances of surface water quality standards established for the protection of aquatic life (see W. Va. Legislative Rule 47CSR2)?						
	If "Yes": Proceed directly to the remedy evaluation or, alternately, proceed with a determination of a Uniform or Site-Specific Ecological Standard, as described in the VRP Guidance Manual, prior to implementation of the remedy. If "No" or "Unknown": Proceed to Step 3.						

STEP	3: Identify Contamination Associated with Ecological Habitats								
3.1	Have the environmental media (e.g., soil, surface water, sediment, biota) associated with the ecological habitat(s) identified in Questions 1.2 through 1.5 been sampled and analyzed with regard to potential site-related contaminants of concern?								
	If "Yes": Proceed to Question 3.2. If "No": Skip to Step 4.								
	Comments (e.g., some media sampled but others not, limitations of data):								
3.2	Have any site-related contaminants been detected above natural background concentrations in environmental media collected from terrestrial habitat?	□ Ye	es nknown	□ No □ n/a					
	Comments (e.g., type of contaminants):								
3.3	Have any site-related contaminants been detected above natural background concentrations in environmental media collected from wetland or aquatic habitats (lotic or lentic habitats)?	□ Yes □ Unknown		□ No □ n/a					
	If "Yes" or "Unknown" to 3.2 and/or 3.3: Proceed to Question 3.4. If "No" or "n/a" to both 3.2 and 3.3: Skip to Question 3.6.								
	Comments (e.g., wetland or aquatic, lotic or lentic, limitations of data):								
3.4	Are site-related contaminants presenting an ecological risk over and above "local" condition	n?	□ Yes □ Unkı	□ No nown					
	If "Yes": Skip to Step 4. If "No" or "Unknown": Proceed to Question 3.5.								
	Comments (e.g., evidence of local condition and/or ecological risk):								
3.5	Have site-related releases of contaminants been stopped?		□ Yes	🗆 No					
	If "Yes": Proceed to Question 3.6. If "No": Skip to Part 4.								
	Comments (e.g., how were releases stopped):								
3.6	Are site-related contaminants currently or likely to be migrating to aquatic habitat (e.g., lot lentic, or wetland habitat)?	□ Yes □ Unkı □ n/a	□ No nown						
	If "Yes" or "Unknown": Proceed to Step 4. If "No" or "n/a": No further ecological evaluation is required. File this completed form w Report.	with th	e Site Ass	essment					

ATTACHMENT 2

STEP	4: Characterize the Potential Ecologics	al Habitat							
4.1	Describe the general land use in the imm	nediate vicinity of the site.							
	□ Commercial/Industrial □ Resident □ Other:	ial 🗆 Rural/Agricultural 🗆 Rural/Undeveloped 🗆 Urban							
4.2	For all affected areas that fulfill the descriptions in Step 1, answer the following and attach a site map identifying the potential ecological habitat.								
	4.2.1 Outline characteristics for potential terrestrial habitats. Location:								
	Contiguous Area:								
	General Topography:								
	Primary Soil Type:								
	Predominant Vegetation Species:								
	4.2.2 Outline characteristics for potent	4.2.2 Outline characteristics for potential wetland habitats (e.g., vernal pools, marshes, etc.).							
	Location:								
	Contiguous Area:								
	General Topography:								
	Primary Soil Type:								
	Predominant Vegetation Species:								
	4.2.3 Outline characteristics for potent	tial lotic habitats (flowing water).							
	Location:								
	Typical Width and Depth:								
	Typical Flow Rate:								
	Typical Gradient (m/km):								
	Type of River/Creek Bottom:								
	Types of Aquatic Vegetation Present:								
	Topography of the Riparian Zone:								
	Predominant Riparian Vegetation:								
	Human Utilization of Lotic Habitat:								
	Local Conditions:								
	4.2.4 Outline characteristics for potent	tial lentic habitats (standing water).							
	Location:								
	Is the lentic habitat?	🗆 Natural 🛛 Man-made							
	Area of Lentic Habitat								
	Typical and Maximum Depth:								
	Description of Sources & Drainage:								
	Predominant Aquatic Vegetation:								
	Topography of Littoral Zone:								
	Predominant Littoral Zone Vegetation:								
	Human Utilization of Lentic Habitat:								
	Local Conditions:								

ATTACHMENT 2

4.3	Indicate if the site contains or is adjacent to any of the following types of valued terrestrial habitats:
	 Climax Community (e.g., old growth forest) Federal Wilderness Area (designated or administratively proposed) National or State Forest National or State Park National or State Wildlife Refuge National Preserve Area State designated natural area Federal land designated for protection of natural ecosystems Federal or State land designated for wildlife or game management Area utilized for breeding by large or dense aggregations of wildlife Feeding, breeding, nesting, cover, or wintering habitat for migratory birds Area important to the maintenance of unique biotic communities (e.g., high proportion of endemic species) Threatened or Endangered Species Critical habitat for federally designated threatened or endangered species Habitat known to be used or potentially used by Federal or State designated threatened or endangered species
4.4	Indicate if the site contains or is adjacent to any of the following types of valued wetlands:
	 Area important to the maintenance of unique biotic communities (e.g., high proportion of endemic species) Area utilized for breeding by large or dense aggregations of wildlife Spawning or nursery areas critical to the maintenance of fish/shellfish species Feeding, breeding, nesting, cover, or wintering habitat for migratory waterfowl or other aquatic birds Area important to the maintenance of unique biotic communities (e.g., high proportion of endemic species) <i>Threatened or Endangered Species</i> Critical habitat for federally designated threatened or endangered species Habitat known to be used or potentially used by Federal or State designated threatened or endangered species, or species in the State Wildlife Action Plan
4.5	Indicate if the site is within or adjacent to any of the following valued aquatic habitats:
	 Federal or State Fish Hatchery Federal or State designated Scenic or Wild River National River Reach designated as recreational Critical areas identified under the Clean Lakes Program Trout-stocked streams or wild trout streams with verified trout production Spawning or nursery areas critical to the maintenance of fish/shellfish species Feeding, breeding, nesting, cover, or wintering habitat for migratory waterfowl or other aquatic birds Area important to the maintenance of unique biotic communities (e.g., high proportion of endemic species) <i>Threatened or Endangered Species</i> Critical habitat for federally designated threatened or endangered species Habitat known to be used or potentially used by Federal or State designated threatened or endangered species, or species in the State Wildlife Action Plan
4.6	Have valued terrestrial, wetland, or aquatic habitats been identified within or adjacent to this site? (A list of agencies that can provide information that should assist in determining whether the site is located within or adjacent to the areas listed in 4.3, 4.4, and 4.5 is provided at the end of this checklist.)

SIE			
5.1	Threatened and Endangered Species	□ Yes	🗆 No
	Were any habitats within or adjacent to the site identified as critical habitat for, or areas known		
	to be used by, federally threatened or endangered species listed in 50CFS17.95 or 17.96?		
	If "Yes", indicate which species*:		
	Amphibians		
	Cheat Mountain salamander (<i>Plethodon nettingi</i>)		
	Clams & Mussels		
	Clubshell (<i>Pleurobema clava</i>)		
	\Box Fanshell (<i>Cyprogenia stegaria</i>)		
	□ James spinymussel (<i>Pleurobema collina</i>)		
	\Box Longsond (Fusconata subrolunaa) \Box Northern riffleshell (Enioblasma torulosa rangiana)		
	Pink mucket nearlymussel (Lampsilis abrunta)		
	□ Purple cat's paw pearlymussel (<i>Epioblasma obliquata obliquata</i>)		
	\Box Rayed bean (Villosa fabalis)		
	Round hickorynut (Obovaria subrotunda)		
	□ Sheepnose (<i>Plethobasus cyphyus</i>)		
	\Box Snuffbox (<i>Epioblasma triquetra</i>)		
	□ Spectablecase (Cumberlandia monodonta)		
	□ Tubercled blossom pearlymussel (<i>Epioblasma torulosa torulosa</i>)		
	Fish		
	Candy darter (<i>Etheostoma osburni</i>)		
	Diamond darter (<i>Crystallaria cincotta</i>)		
	Flowering Plants		
	Harperella (<i>Ptilimnium nodosum</i>)		
	□ Northeastern bulrush (<i>Scirpus ancistrochaetus</i>)		
	\Box Running buffalo cover (<i>Trifolium stoloniferum</i>)		
	□ Shale barren rock cress (<i>Arabis perstellata</i>)		
	User Small whorled pogonia (Isotria medeoloides)		
	Mammals		
	Indiana bat (Myotis sodalis)		
	□ Northern long-eared bat (Myotis sententrionalis)		
	\square Tricolored bat (<i>Perimvotis subflavus</i>) – Proposed Species as of 2022		
	□ Virginia big-eared bat (Corynorhinus towsendii virginianus)		
	Uvirginia northern flying squirrel (Glaucomys sabrinus fuscus)		
	Snails & Invertebrates		
	□ Big Sandy crayfish (<i>Cambarus callainus</i>)		
	□ Flat-spired three-toothed land snail (<i>Triodopsis platysayoides</i>)		
	□ Guyandotte River crayfish (Cambarus veteranus)		
	□ Madison cave isopod (<i>Antrolana lira</i>)		
	\Box Monarch butterfly (<i>Danaus plexippus</i>) – Candidate Species as of 2020		
	□ Rusty-patched bumble bee (<i>Bombus affinis</i>)		

ATTACHMENT 2

5.2	Local Populations Providing Important Natural or Economic Resources, Functions, and Values	□ Yes	🗆 No
	Were any valued terrestrial, wetland, or aquatic habitats listed in 4.3, 4.4, or 4.5 identified		
	within or adjacent to the site?		

If "Yes" to 5.1 and/or 5.2 and/or surface water bodies are not in compliance with applicable water quality standards: The site does not pass the De Minimis ecological risk screening, since a complete exposure pathway may exist for potential ecological receptors of concern. Further evaluation of the site is required using either the Uniform Ecological Standard or the Site-Specific Ecological Standard.

If "No" to 5.1 and 5.2 and surface water bodies are in compliance with applicable water quality standards: No further ecological evaluation is required. File this completed form with the Site Assessment Report.

*The list contains those federally designated threatened and endangered species that are indigenous to WV. WVDNR, Wildlife Resources Section should be consulted to ensure the list is correct. WV has not established a list of state designated threatened or endangered species; however, the WVDNR has developed a <u>"Species of Greatest Conservation Need" list</u> in the <u>State Wildlife Action Plan</u>. Species listed in the State Wildlife Action Plan should also be considered in any Ecological Risk Assessment.

Federal and State Agencies for Ecological Review Consultation

U.S. Department of Agricultural – Natural Resources and Conservation Service 1550 Earl L. Core Road, Suite 200 Morgantown, WV 26505 304-284-7540 https://www.nrcs.usda.gov/wps/portal/nrcs/site/wv/home

U.S. Fish and Wildlife Service – WV Field Office Ecological Services 6263 Appalachian Highway Davis, WV 26260 304-866-3858 https://www.fws.gov/office/west-virginia-ecological-services

WV Division of Forestry 7 Players Club Drive Charleston, WV 25311 304-558-2788 https://wvforestry.com/

WV Division of Natural Resources Building 74 324 Fourth Avenue South Charleston, WV 25303 304-558-2754 http://www.wvdnr.gov/

WV Division of Natural Resources – Wildlife Resources Section Building 74 324 Fourth Avenue South Charleston, WV 25303 304-558-2771 http://www.wvdnr.gov/

Appendix C – Derivation of Source Concentrations

Sample	Sample	Aroclor-1254	d_Aroclor-1254	Antimony	d_Antimony	Arsenic	d_Arsenic	Iron	d_lron	Lead	d_Lead
Name	Depth			-	-						
		µg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
SS-01*	0-0.5	75	0	2.8	1	7.6	1	32000	1	350	1
SS-02	0-0.5	73	0	2.8	1	13	1	23000	1	240	1
SS-03	0-0.5	72	0	4.5	0	5.8	1	27000	1	170	1
SS-04	0-0.5	86	0	49	1	400	1	120000	1	3500	1
SS-05	0-0.5	81	0	24	1	52	1	61000	1	1400	1
SS-06	0-0.5	76	0	10	1	33	1	33000	1	610	1
SS-07*	0-0.5	350	1	1.8	1	6.1	1	19000	1	110	1
SS-08	0-0.5	71	0	3.3	1	20	1	29000	1	740	1
SS-09	0-0.5	77	0	1.4	1	10	1	13000	1	130	1
SS-10	0-0.5	NA		NA		NA		NA		NA	
SS-11	0-0.5	73	0	3.7	0	4.4	1	8000	1	9.3	1
SS-12	0-0.5	180	1	2.7	1	7.6	1	19000	1	180	1
SS-15*	0-2	230	0	NA		16	1	NA		370	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.

Sample	Sample	Benzo(a)anthracene	d_Benzo(a)anthracene	Benzo(a)pyrene	d_Benzo(a)pyrene	Benzo(b)fluoranthene	d_Benzo(b)fluoranthene
Name	Depth						
		µg/kg		µg/kg		µg/kg	
SS-01*	0-0.5	730	1	890	1	1400	1
SS-02	0-0.5	130	1	130	1	240	1
SS-03	0-0.5	640	1	800	1	1400	1
SS-04	0-0.5	42000	1	36000	1	47000	1
SS-05	0-0.5	2000	1	2300	1	3800	1
SS-06	0-0.5	3700	1	4000	1	5600	1
SS-07*	0-0.5	760	1	870	1	1500	1
SS-08	0-0.5	3400	1	3700	1	4900	1
SS-09	0-0.5	2100	1	2400	1	3200	1
SS-10	0-0.5	NA		NA		NA	
SS-11	0-0.5	19	1	23	1	51	1
SS-12	0-0.5	1100	1	1200	1	2200	1
SS-15*	0-2	3100	1	2100	1	3400	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.

Sample	Sample	Benzo(k)fluoranthene	d_Benzo(k)fluoranthene	Dibenzo(a,h)anthracene	d_Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	d_Indeno(1,2,3-cd)pyrene
Name	Depth						
		µg/kg		µg/kg		μg/kg	
SS-01*	0-0.5	490	1	140	1	720	1
SS-02	0-0.5	66	1	29	1	120	1
SS-03	0-0.5	500	1	150	1	760	1
SS-04	0-0.5	16000	1	4100	1	17000	1
SS-05	0-0.5	920	1	370	1	1500	1
SS-06	0-0.5	2100	1	610	1	2500	1
SS-07*	0-0.5	530	1	110	1	650	1
SS-08	0-0.5	1400	1	520	1	2100	1
SS-09	0-0.5	1100	1	320	1	1500	1
SS-10	0-0.5	NA		NA		NA	
SS-11	0-0.5	16	1	4.7	1	24	1
SS-12	0-0.5	790	1	210	1	920	1
SS-15*	0-2	830	1	210	1	1100	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.

Sample	Sample	Aroclor-1254	d_Aroclor-1254	Antimony	d_Antimony	Arsenic	d_Arsenic	Iron	d_lron	Lead	d_Lead
Name	Depth										
		µg/kg		mg/kg		mg/kg		mg/kg		mg/kg	
SS-01*	0-0.5	75	0	2.8	1	7.6	1	32000	1	350	1
SS-02	0-0.5	73	0	2.8	1	13	1	23000	1	240	1
SS-03	0-0.5	72	0	4.5	0	5.8	1	27000	1	170	1
SS-05	0-0.5	81	0	24	1	52	1	61000	1	1400	1
SS-06	0-0.5	76	0	10	1	33	1	33000	1	610	1
SS-07*	0-0.5	350	1	1.8	1	6.1	1	19000	1	110	1
SS-08	0-0.5	71	0	3.3	1	20	1	29000	1	740	1
SS-09	0-0.5	77	0	1.4	1	10	1	13000	1	130	1
SS-10	0-0.5	NA		NA		NA		NA		NA	
SS-11	0-0.5	73	0	3.7	0	4.4	1	8000	1	9.3	1
SS-12	0-0.5	180	1	2.7	1	7.6	1	19000	1	180	1
SS-15*	0-2	230	0	NA		16	1	NA		370	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.

Sample	Sample	Benzo(a)anthracene	d_Benzo(a)anthracene	Benzo(a)pyrene	d_Benzo(a)pyrene	Benzo(b)fluoranthene	d_Benzo(b)fluoranthene
Name	Depth						
		µg/kg		µg/kg		µg/kg	
SS-01*	0-0.5	730	1	890	1	1400	1
SS-02	0-0.5	130	1	130	1	240	1
SS-03	0-0.5	640	1	800	1	1400	1
SS-05	0-0.5	2000	1	2300	1	3800	1
SS-06	0-0.5	3700	1	4000	1	5600	1
SS-07*	0-0.5	760	1	870	1	1500	1
SS-08	0-0.5	3400	1	3700	1	4900	1
SS-09	0-0.5	2100	1	2400	1	3200	1
SS-10	0-0.5	NA		NA		NA	
SS-11	0-0.5	19	1	23	1	51	1
SS-12	0-0.5	1100	1	1200	1	2200	1
SS-15*	0-2	3100	1	2100	1	3400	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.

Sample	Sample	Benzo(k)fluoranthene	d_Benzo(k)fluoranthene	Dibenzo(a,h)anthracene	d_Dibenzo(a,h)anthracene	Indeno(1,2,3-cd)pyrene	d_Indeno(1,2,3-cd)pyrene
Name	Depth						
		µg/kg		µg/kg		µg/kg	
SS-01*	0-0.5	490	1	140	1	720	1
SS-02	0-0.5	66	1	29	1	120	1
SS-03	0-0.5	500	1	150	1	760	1
SS-05	0-0.5	920	1	370	1	1500	1
SS-06	0-0.5	2100	1	610	1	2500	1
SS-07*	0-0.5	530	1	110	1	650	1
SS-08	0-0.5	1400	1	520	1	2100	1
SS-09	0-0.5	1100	1	320	1	1500	1
SS-10	0-0.5	NA		NA		NA	
SS-11	0-0.5	16	1	4.7	1	24	1
SS-12	0-0.5	790	1	210	1	920	1
SS-15*	0-2	830	1	210	1	1100	1

For surface soil samples SS-01, SS-07, and SS-15, the concentration utilized in the dataset was the greater of the parent and associated field duplicate sample results.
UCL Statistics for Data Sets with Non-Detects User Selected Options ProUCL 5.14/1/2024 11:04:19 AM Date/Time of Computation From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Aroclor-1254 General Statistics Total Number of Observations 12 Number of Distinct Observations 11 Number of Missing Observations 2 Number of Detects 2 Number of Non-Detects 10 Number of Distinct Detects 2 Number of Distinct Non-Detects 9 Minimum Detect 180 Minimum Non-Detect 71 Maximum Detect Maximum Non-Detect 350 230 Variance Detects 14450 Percent Non-Detects 83.33% Mean Detects 265 SD Detects 120.2 Median Detects 265 CV Detects 0.454 Skewness Detects N/A Kurtosis Detects N/A Mean of Logged Detects 5.525 SD of Logged Detects 0.47 Warning: Data set has only 2 Detected Values. This is not enough to compute meaningful or reliable statistics and estimates. Normal GOF Test on Detects Only Not Enough Data to Perform GOF Test Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 104.2 KM Standard Error of Mean 33.09 95% KM (BCA) UCL KM SD 80.44 N/A 95% KM (Percentile Bootstrap) UCL 95% KM (t) UCL 163.7 N/A 95% KM (z) UCL 158.7 95% KM Bootstrap t UCL N/A 90% KM Chebyshev UCL 203.5 95% KM Chebyshev UCL 248.5 97.5% KM Chebyshev UCL 310.9 99% KM Chebyshev UCL 433.5 Gamma GOF Tests on Detected Observations Only Not Enough Data to Perform GOF Test Gamma Statistics on Detected Data Only k hat (MLE) 9.374 k star (bias corrected MLE) N/A Theta hat (MLE) 28.27 Theta star (bias corrected MLE) N/A nu hat (MLE) N/A 37.5 nu star (bias corrected) Mean (detects) 265

ProUCL Outputs - All Surface Soil Human Health and Ecological Risk Assessment Former Hinton Ice House

Hinton, WV

Estimates of G	amma Para	meters using KM Estimates		
Mean (KM)	104.2	SD (KM)	80.44	
Variance (KM)	6471	SE of Mean (KM)	33.09	
k hat (KM)	1.679	k star (KM)	1.315	
nu hat (KM)	40.3	nu star (KM)	31.56	
theta hat (KM)	62.08	theta star (KM)	79.27	
80% gamma percentile (KM)	163.6	90% gamma percentile (KM)	224.3	
95% gamma percentile (KM)	283.9	99% gamma percentile (KM)	419.6	
	L	· · · · · ·		
Gamm	a Kaplan-M	leler (KM) Statistics		
		Adjusted Level of Significance (β)	0.029	
Approximate Chi Square Value (31.56, α)	19.72	Adjusted Chi Square Value (31.56, β)	18.31	
95% Gamma Approximate KM-UCL (use when n>=50)	166.8	95% Gamma Adjusted KM-UCL (use when n<50)	179.7	
Lognormal GC)F Test on D	Detected Observations Only		
Not En	ough Data t	o Perform GOF Test		
Lognormal RO	S Statistics	Using Imputed Non-Detects		
Mean in Original Scale	/8./1	Mean in Log Scale	4.011	
SD in Original Scale	94.53	SD in Log Scale	0.742	
95% t UCL (assumes normality of ROS data)	127.7	95% Percentile Bootstrap UCL	128.3	
95% BCA Bootstrap UCL	154.5	95% Bootstrap t UCL	531.3	
95% H-UCL (Log ROS)	126.6			
Challeding with a stimulation				
Statistics using KM estimates			00.01	
KM Mean (logged)	4.481	Critical LUValua (KM Las)	08.31	
KM Standard Error of Moan (logged)	0.494		2.133	
KM Standard Error of Mean (logged)	0.203	95% H-UCE (KW Log)	2 1 2 2	
KM Standard Error of Moan (logged)	0.494	95% Childa H Value (Kivi-Lug)	2.133	
Kin Standard Error of Mean (logged)	0.205			
	DI /2 S	statistics		
DL/2 Normal	0020	DL/2 Log-Transformed		
Mean in Original Scale	82.25	Mean in Log Scale	4.043	
SD in Original Scale	95.34	SD in Log Scale	0.776	
95% t UCL (Assumes normality)	131.7	95% H-Stat UCL	139.4	
DL/2 is not a recommended m	ethod, provi	ded for comparisons and historical reasons		
		· · · · · · · · · · · · · · · · · · ·		
Nonparame	etric Distribu	tion Free UCL Statistics		
Data do not follow a D	iscernible D	istribution at 5% Significance Level		
		-		
	Suggested	UCL to Use		
95% KM (t) UCL	163.7	KM H-UCL	137.1	
95% KM (BCA) UCL	N/A			
Warning: One or i	nore Recon	nmended UCL(s) not available!		
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.				
Recommendations are based upon data size, data distribution, and skewness.				
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).				
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Hinton, V	٧V
-----------	----

Arsenic				
Total Number of Observations	12	Number of Dictinct Observations	11	
	12	Number of Missing Observations	2	
Minimum	4.4	Mon Mon	47.06	
Maximum	4.4	Modian	47.90	
	111 7	Std Error of Moon	22.25	
Coofficient of Veriation	111.7	Stu. EITOLOI Mean	2 272	
	2.33	SKEWHESS	3.372	
	Normal	GOF Test		
Shapiro Wilk Test Statistic	0.423	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.402	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level		
Data Not	Normal at !	5% Significance Level		
Ass	suming Nor	mal Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	105.9	95% Adjusted-CLT UCL (Chen-1995)	134.6	
		95% Modified-t UCL (Johnson-1978)	111.1	
	-	<u> </u>		
	Gamma	GOF Test		
A-D Lest Statistic	1.622	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.78	Data Not Gamma Distributed at 5% Significance Leve	el	
K-S Lest Statistic	0.293	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.258	Data Not Gamma Distributed at 5% Significance Leve	el	
	na Distribut	ed at 5% Significance Level		
	Gamma	Statistics		
k bat (MLE)	0.564	k star (bias corrected MLE)	0.479	
	95.01	Thota star (bias corrected MLE)	100.2	
	12.57		11 /0	
MLE Mean (hias corrected)	17.94	MLE Sd (bias corrected)	69.32	
	47.70	Approvimate Chi Square Value (0.05)	4 901	
Adjusted Level of Significance	0.020	Adjusted Chi Square Value	4.071	
	0.027		4.233	
Ass	uming Gan	nma Distribution		
95% Approximate Gamma UCL (use when n>=50))	112.6	95% Adjusted Gamma UCL (use when n<50)	129.5	
Lognormal GOF Test				
Shapiro Wilk Test Statistic	0.844	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data Not Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.177	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level		
Data appear Approx	kimate Logi	hormal at 5% Significance Level		

Hinton,	wv
---------	----

Lognormal Statistics				
Minimum of Logged Data	1.482	Mean of logged Data	2.765	
Maximum of Logged Data	5.991	SD of logged Data	1.255	
Assu	ming Logn	ormal Distribution		
95% H-UCL	126.2	90% Chebyshev (MVUE) UCL	68.78	
95% Chebyshev (MVUE) UCL	85.65	97.5% Chebyshev (MVUE) UCL	109.1	
99% Chebyshev (MVUE) UCL	155.1			
Nonparame	tric Distribu	Ition Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
		5		
Nonpar	ametric Dis	tribution Free UCLs		
95% CLT UCL	101	95% Jackknife UCI	105.9	
95% Standard Bootstrap UCL	99.26	95% Bootstrap-t UCL	545.2	
95% Hall's Bootstrap UCL	349 5	95% Percentile Bootstran LICL	111.3	
95% BCA Bootstran UCL	143.5		111.0	
90% Chebysbey(Mean_Sd) UCL	144 7	95% Chebysbey(Mean_Sd) UCL	188.6	
97.5% Chebyshev(Mean, Sd) UCL	249.4	99% Chebyshev(Mean, Sd) UCL	368.9	
	Suggested	UCL to Use		
95% Chebyshev (Mean, Sd) UCL	188.6			
		· · · · ·		
Note: Suggestions regarding the selection of a 95%	UCL are pr	rovided to help the user to select the most appropriate 95% UCL.		
Recommendations are bas	ed upon da	ta size, data distribution, and skewness.		
These recommendations are based upon the result	ts of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

 Hinton,	wv

Iron				
	General	Statistics		
Total Number of Observations	11	Number of Distinct Observations	10	
		Number of Missing Observations	2	
Minimum	8000	Mean	34909	
Maximum	120000	Median	27000	
SD	31437	Std. Error of Mean	9479	
Coefficient of Variation	0.901	Skewness	2.334	
	Normal	GOF Test		
Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.342	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level		
Data Not	Normal at t	5% Significance Level		
As	suming Nor			
95% Normal UCL	50000	95% UCLs (Adjusted for Skewness)	57/00	
95% Student's-t UCL	52089	95% Adjusted-CLT UCL (Chen-1995)	57628	
		95% Modified-t UCL (Johnson-1978)	53201	
		0057 ·		
	Gamma			
	0.529	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.739	Letected data appear Gamma Distributed at 5% Significant	ce Levei	
	K-S Test Statistic 0.256 Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Childal Value	5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level		ce Level	
Delected data appea	i Gamma Di			
	Gamma	Statistics		
k bat (MLE)	2 056	k star (bias corrected MLE)	1 556	
Theta bat (MLF)	16981	Theta star (bias corrected MLE)	22440	
nu bat (MLE)	45.23	nu star (bias corrected)	34.22	
MI E Mean (bias corrected)	34909	MLE Sd (bias corrected)	27988	
,		Approximate Chi Square Value (0.05)	21.84	
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	20.24	
,				
As	suming Gam	nma Distribution		
95% Approximate Gamma UCL (use when n>=50)	54695	95% Adjusted Gamma UCL (use when n<50)	59016	
, , , ,				
Lognormal GOF Test				
Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.206	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level		
Data appear	· Lognormal	at 5% Significance Level		
	-			

V

Lognormal Statistics				
Minimum of Logged Data	8.987	Mean of logged Data	10.2	
Maximum of Logged Data	11.7	SD of logged Data	0.725	
Assi	uming Logr	ormal Distribution		
95% H-UCL	61977	90% Chebyshev (MVUE) UCL	57031	
95% Chebyshev (MVUE) UCL	67495	97.5% Chebyshev (MVUE) UCL	82018	
99% Chebyshev (MVUE) UCL	110546			
Nonparame	etric Distrib	ution Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
Nonna	amotric Di	stribution From UCLs		
			E2000	
95% CET UCL	40002		05510	
95% Standard Bootstrap UCL	49883		85510	
95% Hall s Bootstrap UCL	134895	95% Percentile Bootstrap UCL	51000	
95% BCA Bootstrap UCL	58636			
90% Chebyshev(Mean, Sd) UCL	63345	95% Chebyshev(Mean, Sd) UCL	76226	
97.5% Chebyshev(Mean, Sd) UCL	94103	99% Chebyshev(Mean, Sd) UCL	129220	
	Suggester	d UCL to Use		
95% Adjusted Gamma UCL	59016			
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL		
Recommendations are bas	sed upon da	ata size, data distribution, and skewness.		
These recommendations are based upon the resu	Its of the si	mulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Lead				
General Statistics				
Total Number of Observations	12	Number of Distinct Observations	12	
		Number of Missing Observations	2	
Minimum	9.3	Mean	650.8	
Maximum	3500	Median	295	
SD	974.9	Std. Error of Mean	281.4	
Coefficient of Variation	1.498	Skewness	2.667	
	Normal	GOF Test		
Shapiro Wilk Test Statistic	0.634	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.297	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level		
Data Not	Normal at !	5% Significance Level		
As	suming Nor	mal Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	1156	95% Adjusted-CLT UCL (Chen-1995)	1345	
		95% Modified-t UCL (Johnson-1978)	1192	
	Gamma	GOF Test		
A-D Test Statistic	0.414	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.767	Detected data appear Gamma Distributed at 5% Significant	ce Level	
K-S Test Statistic	0.179	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.255	Detected data appear Gamma Distributed at 5% Significant	ce Level	
Detected data appear	Gamma D	stributed at 5% Significance Level		
	Gamma	Statistics		
k hat (MLE)	0.726	k star (bias corrected MLE)	0.6	
Theta hat (MLE)	896	Theta star (bias corrected MLE)	1084	
nu hat (MLE)	17.43	nu star (bias corrected)	14.41	
MLE Mean (bias corrected)	650.8	MLE Sd (bias corrected)	840	
		Approximate Chi Square Value (0.05)	6.851	
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	6.072	
Ass	uming Gan	nma Distribution		
95% Approximate Gamma UCL (use when n>=50)	1369	95% Adjusted Gamma UCL (use when n<50)	1544	
		1		
Lognormal GOF Test				
Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.177	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level		
Data appear	Lognormal	at 5% Significance Level		

Lognormal Statistics				
Minimum of Logged Data	2.23	Mean of logged Data	5.65	
Maximum of Logged Data	8.161	SD of logged Data	1.482	
		+ +		
Assu	iming Logn	ormal Distribution		
95% H-UCL	4786	90% Chebyshev (MVUE) UCL	1752	
95% Chebyshev (MVUE) UCL	2216	97.5% Chebyshev (MVUE) UCL	2859	
99% Chebyshev (MVUE) UCL	4123			
Nonparame	etric Distrib	ution Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
Nonpar	ametric Di	stribution Free UCLs		
95% CLT UCL	1114	95% Jackknife UCL	1156	
95% Standard Bootstrap UCL	1086	95% Bootstrap-t UCL	2364	
95% Hall's Bootstrap UCL	3035	95% Percentile Bootstrap UCL	1172	
95% BCA Bootstrap UCL	1432			
90% Chebyshev(Mean, Sd) UCL	1495	95% Chebyshev(Mean, Sd) UCL	1878	
97.5% Chebyshev(Mean, Sd) UCL	2408	99% Chebyshev(Mean, Sd) UCL	3451	
	Suggested	I UCL to Use		
95% Adjusted Gamma UCL	1544			
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.				
Recommendations are based upon data size, data distribution, and skewness.				
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).				
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Hinton,	wv
,	

	General St	atistics	
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	2
Minimum	19	Mean	4973
Maximum	42000	Median	1550
SD	11729	11729 Std. Error of Mean	
Coefficient of Variation	2.358	Skewness	3.39
	Normal GC)F Test	
Shapiro Wilk Test Statistic	0.425	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.46	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5%	Significance Level	
		Distribution	
AS:	suming Norma	05% LICLs (Adjusted for Skowpess)	
	11054		14095
75% Students-t UCL	11034	05% Modified t LCL (Johnson 1079)	114005
		95% Woulled-LOCE (JOHISOH-1976)	11000
	Gamma GC	DF Test	
A-D Test Statistic	0.871	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.795	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.291	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.26	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gam	na Distributed	at 5% Significance Level	
	Gamma St	atistics	
k hat (MLE)	0.447	k star (bias corrected MLE)	0.39
Theta hat (MLE)	11127	Theta star (bias corrected MLE)	12727
nu hat (MLE)	10.73	nu star (bias corrected)	9.37
MLE Mean (bias corrected)	4973	MLE Sd (bias corrected)	7956
		Approximate Chi Square Value (0.05)	3.55
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	3.03
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	3.03
Adjusted Level of Significance Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.029	a Distribution	3.03
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.029 suming Gamm 13112	Adjusted Chi Square Value a Distribution 95% Adjusted Gamma UCL (use when n<50)	3.03
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.029 suming Gamm 13112	a Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test	3.03
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	0.029 suming Gamm 13112 Lognormal G 0.932	a Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	3.03
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.029 suming Gamm 13112 Lognormal G 0.932 0.859	Adjusted Chi Square Value a Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	3.03
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.029 suming Gamm 13112 Lognormal G 0.932 0.859 0.208	Adjusted Chi Square Value a Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	3.03

Hinton, W	I
-----------	---

Lognormal Statistics				
Minimum of Logged Data	2.944	Mean of logged Data	7.065	
Maximum of Logged Data	10.65	SD of logged Data	1.894	
Assu	iming Logn	ormal Distribution		
95% H-UCL	104755	90% Chebyshev (MVUE) UCL	14332	
95% Chebyshev (MVUE) UCL	18494	97.5% Chebyshev (MVUE) UCL	24270	
99% Chebyshev (MVUE) UCL	35615			
Nonparame	etric Distrib	ution Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
Nonpai	ametric Dis	stribution Free UCLs		
95% CLT UCL	10542	95% Jackknife UCL	11054	
95% Standard Bootstrap UCL	10361	95% Bootstrap-t UCL	44984	
95% Hall's Bootstrap UCL	35920	95% Percentile Bootstrap UCL	11624	
95% BCA Bootstrap UCL	14900			
90% Chebyshev(Mean, Sd) UCL	15131	95% Chebyshev(Mean, Sd) UCL	19732	
97.5% Chebyshev(Mean, Sd) UCL	26118	99% Chebyshev(Mean, Sd) UCL	38662	
	Suggested	I UCL to Use		
99% Chebyshev (Mean, Sd) UCL	38662			
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL		
Recommendations are based upon data size, data distribution, and skewness.				
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).				
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Hinton,	wv
,	

Benzo(a)pyrene				
	General	Statistics		
Total Number of Observations	12	Number of Distinct Observations	12	
		Number of Missing Observations	2	
Minimum	23	Mean	4534	
Maximum	36000	Median	1650	
SD	9991	Std. Error of Mean	2884	
Coefficient of Variation	2.203	Skewness	3.364	
	Normal	GOF Test		
Shapiro Wilk Test Statistic	0.443	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	5% Shapiro Wilk Critical Value 0.950 Data Not Normal at 5% Significance Level			
Lilliefors Test Statistic	0.438			
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level		
Data Not	Normal at	5% Significance Level		
		-		
As	suming Nor	mal Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	9714	95% Adjusted-CLT UCL (Chen-1995)	12271	
		95% Modified-t UCL (Johnson-1978)	10181	
	Commo	COE Text		
A-D Test Statistic	0.82	Anderson-Darling Gamma GOF Test		
5% A D Critical Value	A-D Test Statistic 0.82 Anderson-Dahming Gamma Gor Test			
K-S Test Statistic	0.760	Kolmogorov-Smirnov Gamma GOF Test		
5% K S Critical Value	0.203	Data Not Camma Distributed at 5% Significance Low	ol	
Data Not Gam	ma Distribut	ted at 5% Significance Level	CI	
	Gamma	Statistics		
k hat (MLE)	0.492	k star (bias corrected MLE)	0.425	
Theta hat (MLE)	9211	Theta star (bias corrected MLE)	10675	
nu hat (MLE)	11.81	nu star (bias corrected)	10.19	
MLE Mean (bias corrected)	4534	MLE Sd (bias corrected)	6957	
		Approximate Chi Square Value (0.05)	4.064	
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	3.493	
Ass	suming Gar	nma Distribution		
95% Approximate Gamma UCL (use when n>=50))	11376	95% Adjusted Gamma UCL (use when n<50)	13234	
	Lognorma	I GOF Test		
Shapiro Wilk Test Statistic	0.921	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.237	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level		
Data appear	Lognormal	at 5% Significance Level		

Hinton,	N۷
---------	----

Lognormal Statistics				
Minimum of Logged Data	3.135	Mean of logged Data	7.126	
Maximum of Logged Data	10.49	SD of logged Data	1.82	
Assi	uming Logn	ormal Distribution		
95% H-UCL	79977	90% Chebyshev (MVUE) UCL	13402	
95% Chebyshev (MVUE) UCL	17241	97.5% Chebyshev (MVUE) UCL	22570	
99% Chebyshev (MVUE) UCL	33038			
Nonparame	etric Distrib	ution Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
Nonpa	ametric Di	stribution Free UCLs		
95% CLT UCL	9279	95% Jackknife UCL	9714	
95% Standard Bootstrap UCL	9114	95% Bootstrap-t UCL	35249	
95% Hall's Bootstrap UCL	29555	95% Percentile Bootstrap UCL	10196	
95% BCA Bootstrap UCL	13027			
90% Chebyshev(Mean, Sd) UCL	13187	95% Chebyshev(Mean, Sd) UCL	17106	
97.5% Chebyshev(Mean, Sd) UCL	22546	99% Chebyshev(Mean, Sd) UCL	33232	
	-			
	Suggestee	I UCL to Use		
99% Chebyshev (Mean, Sd) UCL	33232			
Note: Suggestions regarding the selection of a 95%	5 UCL are p	rovided to help the user to select the most appropriate 95% UCL		
Recommendations are bas	sed upon da	ata size, data distribution, and skewness.		
These recommendations are based upon the resu	Its of the sir	mulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Hinton,	w٧

	General	Statistics	
Total Number of Observations	12	Number of Distinct Observations	11
	12	Number of Distinct Observations	2
Minimum	Б1	Manuel of Missing Observations	6224
Maximum	47000	Modian	2700
	47000	Std Error of Moon	2700
Coofficient of Variation	2 002	Stu. Entit of Medit	2 25
	2.062	SKEWIESS	3.30
	Normal G	OF Test	
Shapiro Wilk Test Statistic	0.452	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.436	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	% Significance Level	
۵	sumina Norm	nal Distribution	
95% Normal UCL	suming North	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	12942	95% Adjusted-CLT UCL (Chen-1995)	16247
		95% Modified-t UCL (Johnson-1978)	13545
A.D Test Statistic		GOF Test	
5% A-D Critical Value	0.047	Data Not Gamma Distributed at 5% Significance Lev	ما
K-S Test Statistic	0.761	Kolmogorov-Smirnov Gamma GOE Test	
5% K-S Critical Value	0.207	Data Not Gamma Distributed at 5% Significance Lev	ما
Data Not Gam	na Distribute	ed at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	0.552	k star (bias corrected MLE)	0.47
k hat (MLE) Theta hat (MLE)	0.552 11271	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.47 13250
k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.552 11271 13.25	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	0.47 13250 11.2
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	0.552 11271 13.25 6224	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	0.47 13250 11.2 9082
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	0.552 11271 13.25 6224	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	0.47 13250 11.2 9082 4.75
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.552 11271 13.25 6224 0.029	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	0.47 13250 11.2 9082 4.75 4.12
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.552 11271 13.25 6224 0.029 suming Gam	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution	0.47 13250 11.2 9082 4.75 4.12
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance As: 95% Approximate Gamma UCL (use when n>=50))	0.552 11271 13.25 6224 0.029 suming Gamm 14765	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	0.47 13250 11.2 9082 4.75 4.12 17009
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance As: 95% Approximate Gamma UCL (use when n>=50))	0.552 11271 13.25 6224 0.029 suming Game 14765	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOE Test	0.47 13250 11.27 9082 4.75 4.12 17009
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance Shapiro Wilk Test Statistic	0.552 11271 13.25 6224 0.029 suming Gam 14765 Lognormal 0.913	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	0.47 13250 11.2 9082 4.75 4.12 17009
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance Shapiro Wilk Test Statistic	0.552 11271 13.25 6224 0.029 suming Gam 14765 Lognormal 0.913 0.859	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	0.47 13250 11.2 9082 4.75 4.12 17009
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.552 11271 13.25 6224 0.029 suming Gam 14765 Lognormal 0.913 0.859 0.240	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	0.47 13250 11.2 9082 4.75 4.12 17009
k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Adjusted Level of Significance Shapiro Wilk Test Statistic 5% Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.552 11271 13.25 6224 0.029 suming Game 14765 Lognormal 0.913 0.859 0.249 0.242	k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	0.47 13250 11.2 9082 4.75 4.12 17009

_	Hinton,	w٧
-	Hinton,	VV V

Lognormal Statistics					
Minimum of Logged Data	3.932	Mean of logged Data	7.603		
Maximum of Logged Data	10.76	SD of logged Data	1.68		
		· · · · · ·			
Assi	uming Logr	ormal Distribution			
95% H-UCL	71620	90% Chebyshev (MVUE) UCL	17059		
95% Chebyshev (MVUE) UCL	21807	97.5% Chebyshev (MVUE) UCL	28398		
99% Chebyshev (MVUE) UCL	41343				
		· · · · · ·			
Nonparame	etric Distrib	ution Free UCL Statistics			
Data appear to follow a	Discernible	Distribution at 5% Significance Level			
Nonpa	ametric Di	stribution Free UCLs			
95% CLT UCL	12377	95% Jackknife UCL	12942		
95% Standard Bootstrap UCL	12143	95% Bootstrap-t UCL	42461		
95% Hall's Bootstrap UCL	39881	95% Percentile Bootstrap UCL	13488		
95% BCA Bootstrap UCL	17188				
90% Chebyshev(Mean, Sd) UCL	17446	95% Chebyshev(Mean, Sd) UCL	22528		
97.5% Chebyshev(Mean, Sd) UCL	29583	99% Chebyshev(Mean, Sd) UCL	43441		
	Suggestee	d UCL to Use			
99% Chebyshev (Mean, Sd) UCL	43441				
Note: Suggestions regarding the selection of a 95%	5 UCL are p	rovided to help the user to select the most appropriate 95% UCL			
Recommendations are bas	sed upon da	ata size, data distribution, and skewness.			
These recommendations are based upon the resu	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).				
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.					

Hinton, WV

	General 3	Statistics	
Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	2
Minimum	16	Mean	2062
Maximum	16000	Median	810
SD	4426	Std. Error of Mean	1278
Coefficient of Variation	2.147	Skewness	3.363
	Normal G	SOF Test	
Shapiro Wilk Test Statistic	0.443	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.443	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.007		
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5	% Significance Level	
	I NI	- I Diskikular	
95% Normal UCL	suming Norn	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4356	95% Adjusted-CLT UCL (Chen-1995)	5489
		95% Modified-t UCL (Johnson-1978)	4563
	Commo		
A-D Test Statistic	0.965	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.782	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.252	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.258	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data follow Ap	pr. Gamma I	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.534	k star (bias corrected MLE)	0.456
Theta hat (MLE)	3863	Theta star (bias corrected MLE)	4523
nu hat (MLE)	12.81	nu star (bias corrected)	10.94
MLE Mean (bias corrected)	2062	MLE Sd (bias corrected)	3054
	I	Approximate Chi Square Value (0.05)	4.538
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	3.928
As	suming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50)	4971	95% Adjusted Gamma UCL (use when n<50)	5743
	Lognormal	COE Test	
Shapiro Wilk Test Statistic	0.901	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.273	Lilliefors Lognormal GOF Test	
	0.243	Data Not Lognormal at 5% Significance Level	

Hinton,	WV
---------	----

Minimum of Logged Data 2.773 Mean of logged Maximum of Logged Data 9.68 SD of logged Assuming Lognormal Distribution 95% H-UCL 24777 90% Chebyshev (MVUE 95% Chebyshev (MVUE) UCL 7168 97.5% Chebyshev (MVUE 99% Chebyshev (MVUE) UCL 13613 97.5% Chebyshev (MVUE Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level	Data Data	6.453
Maximum of Logged Data 9.68 SD of logged Assuming Lognormal Distribution 95% H-UCL 24777 90% Chebyshev (MVUE) 95% Chebyshev (MVUE) UCL 7168 97.5% Chebyshev (MVUE) 99% Chebyshev (MVUE) UCL 13613 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level	Data	4 700
Assuming Lognormal Distribution 95% H-UCL 24777 90% Chebyshev (MVUE) 95% Chebyshev (MVUE) 7168 97.5% Chebyshev (MVUE) 99% Chebyshev (MVUE) UCL 13613 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs		1.702
95% H-UCL 24777 90% Chebyshev (MVUE 95% Chebyshev (MVUE) UCL 7168 97.5% Chebyshev (MVUE 99% Chebyshev (MVUE) UCL 13613 97.5% Chebyshev (MVUE Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs		
95% Chebyshev (MVUE) UCL 7168 97.5% Chebyshev (MVUE 99% Chebyshev (MVUE) UCL 13613 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level) UCL	5601
99% Chebyshev (MVUE) UCL 13613 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs) UCL	9342
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs 05% CLT LICL		
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs 05% OLT LUCE 41/4		
Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs		
Nonparametric Distribution Free UCLs		
Nonparametric Distribution Free UCLs		
95% CLI UCL 4104 95% JACKKNIG	UCL	4356
95% Standard Bootstrap UCL 4104 95% Bootstrap-	t UCL	17475
95% Hall's Bootstrap UCL 14708 95% Percentile Bootstrap	UCL	4529
95% BCA Bootstrap UCL 5873		
90% Chebyshev(Mean, Sd) UCL 5895 95% Chebyshev(Mean, Sd	UCL	7631
97.5% Chebyshev(Mean, Sd) UCL 10041 99% Chebyshev(Mean, Sd	UCL	14775
Suggested UCL to Use		
95% Adjusted Gamma UCL 5743		
	I	
When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test		
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in Pro	UCL	
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95'	% UCL	
Recommendations are based upon data size, data distribution, and skewness.		
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a st	atisticia	an.

General Statistics Total Number of Distinct Observations 12 Number of Missing Observations 11 Number of Missing Observations 12 Minimum 4.7 Maximum 100 Sto 1129 Sto 1129 Sto 1199 Sto 1109 Sto 1109 Sto 1100 Sto 11000 Sto <th>enzo(a,h)anthracene</th> <th></th> <th></th> <th></th>	enzo(a,h)anthracene				
Total Number of Observations 12 Number of Distinct Observations 11 Number of Missing Observations 2 Number of Missing Observations 2 Minimum 4100 Median 210 SD 1129 Std. Error of Mean 258 Coefficient of Variation 1.999 Steapro Wilk CoF Test 3.30 Normal GOF Test 0.476 Shapiro Wilk CoF Test 3.30 Shapiro Wilk Critical Value 0.476 Shapiro Wilk CoF Test 3.30 Shapiro Wilk Critical Value 0.476 Shapiro Wilk CoF Test 3.30 Shapiro Wilk Critical Value 0.476 Shapiro Wilk CoF Test 3.30 Shapiro Wilk Critical Value 0.476 Shapiro Wilk Critical Value 0.476 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level 1432 Shapiro Wilk Critical Value 0.705 Anderson-Darling Gamma GOF Test 1432 Si% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Level 1432 Si% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level 142 K hat (MLE) <td< th=""><th></th><th>General</th><th>Statistics</th><th></th></td<>		General	Statistics		
Number of Missing Observations 2 Maximum 4.7 Meah Median 54.5 Maximum 410 Median 220 Sd. Error of Mean 225.8 Coofficient of Variation 1.99 Sid. Error of Mean 225.8 3.30 Normal GOF Test Shapiro Wilk Critical Value 0.476 Shapiro Wilk GOF Test 3.30 5% Shapiro Wilk Critical Value 0.476 Shapiro Wilk GOF Test 3.30 5% Lillefors Critical Value 0.243 Data Not Normal at 5% Significance Level 4.01 Lillefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution Side of Test Assuming Normal Distribution Side of Test Anderson-Darling Gamma GOF Test Anderson-Darling Gamma GOF Test Anderson-Darling Gamma GOF Test Significance Level Gamma GOF Test Significance Level <tr< th=""><th>Total Number of Observations</th><th>12</th><th>Number of Distinct Observations</th><th>11</th></tr<>	Total Number of Observations	12	Number of Distinct Observations	11	
Minimum 4.7 Mean 564 5 Maximum 1100 Median 210 Std 1129 Std 2358 Coefficient of Variation 1.999 Std 3.33 Normal GOF Test Shapiro Wilk Test Statistic 0.476 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.859 Data Not Normal at 5% Significance Level Lilliefors Critical Value 0.430 Lilliefors GOF Test 5% Lilliefors Critical Value 0.421 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Gamma GOF Test Of Side of Skewness) 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 Gamma GOF Test Gamma GOF Test 6.4.D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 1201 Gamma GOF Test Significance Level Celected data appear Gamma Distributed at 5% Significance Level Celected data appear Gamma Distributed at 5% Significance Leve			Number of Missing Observations	2	
Maximum 4100 Median 210 SD 1129 Sid. Error of Mean 325.8 Coefficient of Variation 1.999 Skewness 3.30 Normal GOF Test Shapiro Wilk Critical Value 0.476 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.476 Shapiro Wilk GOF Test 3.30 5% Shapiro Wilk Critical Value 0.476 Shapiro Wilk GOF Test 3.30 5% Lilliefors Critical Value 0.401 Lilliefors GOF Test 3.30 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level 3.30 Assuming Normal Distribution 95% Normal UCL 95% VCLs (Adjusted for Skewness) 95% Student's-t UCL 1150 95% Modified-t UCL (Chen-1995) 1432 Of Samma GOF Test Camma GOF Test 0.705 Anderson-Darling Gamma GOF Test 3.20 Of Samma GOF Test Significance Level Delected data appear Gamma Distributed at 5% Significance Level	Minimum	4.7	Mean	564.5	
SD 1129 Std. Error of Mean 235.8 Coefficient of Variation 1.999 Skewness 3.30 Normal GOF Test Shapiro Wilk Test Statistic 0.476 Shapiro Wilk GOF Test 5% Shapiro Wilk Test Statistic 0.476 Data Not Normal at 5% Significance Level Lilliefors Gfted 0.401 Liliefors Gfted 0.401 L	Maximum	4100	Median	210	
Coefficient of Variation 1.999 Skewness 3.30 Normal GOF Test Shapiro Wilk Cell Test 5% <t< td=""><td>SD</td><td>1129</td><td>Std. Error of Mean</td><td>325.8</td></t<>	SD	1129	Std. Error of Mean	325.8	
Normal GOF Test Shapiro Wilk Critical Value 0.859 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.401 Lilliefors GOF Test 5% Shapiro Wilk Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Data Not Normal Distribution 95% Normal UCL 95% Adjusted for Skewness) 95% Student's-t UCL 1150 95% Modified-t UCL (Johnson-1978) 1201 Comma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve Comma Statistic 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Leve Comma Statistics K hat (MLE) 0.57 K hat (MLE) 0.57 K star (bias corrected MLE) 0.49 M het M(MLE) 0.57 K star (bias corrected MLE) 0.49	Coefficient of Variation	1.999	Skewness	3.302	
Shapiro Wilk Test Statistic 0.476 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value 0.859 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.401 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Obta Normal Distribution 95% Normal UCL 95% Normal UCL 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-UCL (Johnson-1978) 95% Modified-UCL (Johnson-1978) Other Statistic And Critical Value Other Statistic And Critical Value Other Statistic And Critical Value Other Statistic Statistic Camma Statistics K Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic <td c<="" td=""><td></td><td>Normal</td><td>GOF Test</td><td></td></td>	<td></td> <td>Normal</td> <td>GOF Test</td> <td></td>		Normal	GOF Test	
5% Shapiro Wilk Critical Value 0.859 Data Not Normal at 5% Significance Level Lilliefors Test Statistic 0.401 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 1150 95% Modified-t UCL (Johnson-1978) 1432 95% Student's-t UCL 1150 95% Modified-t UCL (Johnson-1978) 1201 Gamma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test Significance Level Wetest Statistic 0.705 Anderson-Darling Gamma GOF Test Significance Level Gamma GOF Test Significance Level Camma Statistic Significance Level Camma Statistics A hat (MLE) 0.57 K star (bias corrected) Significance Level MEE Significance Approximate Chi Square Value (0.05) A hat (MLE) 0.57 K star (bias	Shapiro Wilk Test Statistic	0.476	Shapiro Wilk GOF Test		
Lilliefors Test Statistic 0.401 Lilliefors GOF Test 5% Lilliefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Student's-I UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Normal UCL 95% Modified-I UCL (Johnson-1978) 1201 Gamma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.57 K star (bias corrected MLE) 0.48 Theta hat (MLE) 0.57 K star (bias corrected MLE) 0.48 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected MLE) 116 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected MLE) 142 95% Approximate Gamma UCL (use when n>=50) 1319 95%	5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level		
5% Lillefors Critical Value 0.243 Data Not Normal at 5% Significance Level Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Modified-1 UCL (Johnson-1978) 1201 Comma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test Statistic 0.702 Detected data appear Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov Gamma GOF Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Comma Statistics Marma Statistics A that (MLE) 0.57 k star (bias corrected MLE) 0.48 MLE Mean (bias corrected) 11.6 MLE Mean (bias corrected) 11.6 MLE Mean (bias corrected) 54.5 Adjusted Chi Square Value 4.32 Adjusted Chi Square Value 4.32	Lilliefors Test Statistic	0.401	Lilliefors GOF Test		
Data Not Normal at 5% Significance Level Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1201 Comma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Level 0.428 Detected data appear Gamma Distributed at 5% Significance Level Material Mathel 0.57 K star (bias corrected MLE) 14.48 Mult Mathel 98.9 Theta star (bias corrected MLE) 14.48 Mult Mult MLE 13.69 nu star (bias corrected MLE) 116.61 Mult Mult Mult Mult Mult Mult Mult Mult	5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level		
Assuming Normal Distribution 95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Student's-t UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Modified-t UCL (Johnson-1978) 1201 1201 Gamma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smitnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K star (bias corrected MLE) 0.48 Multe Mean (bias corrected) 0.57 k star (bias corrected) 11.6 Multe Mean (bias corrected) 54.5 MLE Sd (bias corrected) 11.6 Multe Mean (bias corrected) 54.5 MLE Sd (bias corrected) 81.2 Approximate Chi Square Value (0.05) 4.96 Approximate Chi Square Value (4.32 Multe Assuming Gamma Distribution	Data Not	Normal at !	5% Significance Level		
95% Normal UCL 95% UCLs (Adjusted for Skewness) 95% Normal UCL 95% Student's-I UCL 1150 95% Adjusted-CLT UCL (Chen-1995) 1432 95% Modified-I UCL (Johnson-1978) 1201 1201 Camma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test Camma GOF Test Sk Adjusted Ata appear Gamma Distributed at 5% Significance Leve Sk K-S Critical Value 0.224 Kolmogorov-Smirnov Gamma GOF Test Smirnov Gamma Bolstributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Leve Camma Statistics Materia Nulle 0.48 Materia Nulle 0.49 Materia Nulle 0.49 Materia Nulle 0.48 Materia Nulle 0.57 k star (bias corrected MLE) 0.48 Materia Nulle 0.57 k star (bias corrected MLE) 0.48 Materia Nulle 0.57 k star (bias corrected MLE) 11.6 Materia Nulle 0.57 k star (bias corrected MLE) <td>۵۵</td> <td>sumina Nor</td> <td>mal Distribution</td> <td></td>	۵۵	sumina Nor	mal Distribution		
Torona bit difference of the colspan="2">Torona bit differencolspan="2""Toroda bit difference of the colspan="2" Cols	95% Normal UCL	Suming No.	95% UCLs (Adjusted for Skewness)		
Note inductive consistence of colspan="2">Note inductity consistence of colspan="2">Note inductive consistencon colspan="2">Note inductive consistence of c	95% Student's-t UCL	1150	95% Adjusted-CLT UCL (Chen-1995)	1432	
Gamma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Theta star (bias corrected MLE) 0.49 Multi Mittel 13.69 nu star (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.29 Adjusted Chi Square Value 4.32 Lognormal GOF Test Shapiro Wilk Test Statistic Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.205 Lillefors Lognormal at 5% Significance Level Lognormal GOF Test Shapiro Wilk Critical Value 0.205 Lillefors Lognormal at 5% S			95% Modified-t LICL (Johnson-1978)	1201	
Gamma GOF Test A-D Test Statistic 0.705 Anderson-Darling Gamma GOF Test 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics Camma Statistics A hat (MLE) 0.57 K star (bias corrected MLE) 0.48 MLE Mean (bias corrected) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Detected data appear Comma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	<td></td> <td></td> <td></td> <td></td>				
A-D fest Statistic 0.705 Anderson-Darling Gamma COF Fest 5% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Leve K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Leve Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Theta hat (MLE) 0.57 k star (bias corrected MLE) 1168 1116 nu hat (MLE) 989.9 Theta star (bias corrected MLE) 1116 1116 nu hat (MLE) 13.69 nu star (bias corrected) 812 1116 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 1116 Adjusted Level of Significance 0.029 Adjusted Chi Square Value (0.05) 4.96 1116 Adjusted Level of Significance 0.029 Adjusted Gamma UCL (use when n<50)		Gamma	GOF Test		
S% A-D Critical Value 0.78 Detected data appear Gamma Distributed at 5% Significance Level K-S Test Statistic 0.224 Kolmogorov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Mathematical K hat (MLE) 0.57 k star (bias corrected MLE) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value (0.05) 4.96 Contract Colspan="2">Lognormal GOF Test Shapiro Wilk Test Statistic O.93 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal GOF Test Significance Level	A-D Test Statistic	0.705	Anderson-Darling Gamma GOF Test	<u> </u>	
K-S Test Statistic 0.224 Kolmogrov-Smirnov Gamma GOF Test 5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 K star (bias corrected MLE) 0.48 Theta hat (MLE) 0.57 N test statistics Matter (bias corrected MLE) 0.48 Theta hat (MLE) 0.57 N test statistics MLE Mean (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Lognormal GOF Test Shapiro Wilk Test Statistic 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	5% A-D Critical Value	0.78	Detected data appear Gamma Distributed at 5% Significant	ce Level	
5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Significance Level Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Theta hat (MLE) 0.57 k star (bias corrected MLE) 11.68 nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Approximate Chi Square Value (0.05) 4.32 Lognormal Distribution Shapiro Wilk Level of Significance 0.933 Shapiro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level 11111 Lilliefors Test Statistic 0.205 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243	K-S Test Statistic	0.224	Kolmogorov-Smirnov Gamma GOF Test	<u> </u>	
Detected data appear Gamma Distributed at 5% Significance Level Gamma Statistics K hat (MLE) 0.57 K star (bias corrected MLE) 0.48 Theta hat (MLE) 989.9 Theta star (bias corrected MLE) 1168 nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Lognormal Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	5% K-S Critical Value	0.258	Detected data appear Gamma Distributed at 5% Significant	ce Level	
Gamma Statistics k hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Theta hat (MLE) 989.9 Theta star (bias corrected MLE) 1168 nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	Detected data appear	Gamma Di	stributed at 5% Significance Level		
k hat (MLE) 0.57 k star (bias corrected MLE) 0.48 Theta hat (MLE) 989.9 Theta star (bias corrected MLE) 1168 nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 4.32 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)		Gamma	Statistics		
Theta hat (MLE) 989.9 Theta star (bias corrected MLE) 1168 nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	k hat (MLE)	0.57	k star (bias corrected MLE)	0.483	
nu hat (MLE) 13.69 nu star (bias corrected) 11.6 MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	Theta hat (MLE)	989.9	Theta star (bias corrected MLE)	1168	
MLE Mean (bias corrected) 564.5 MLE Sd (bias corrected) 812 Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	nu hat (MLE)	13.69	nu star (bias corrected)	11.6	
Approximate Chi Square Value (0.05) 4.96 Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 4.32 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	MLE Mean (bias corrected)	564.5	MLE Sd (bias corrected)	812	
Adjusted Level of Significance 0.029 Adjusted Chi Square Value 4.32 Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50) 1516 Lognormal GOF Test Lognormal GOF Test 5% Shapiro Wilk Test Statistic 0.933 Shaplro Wilk Lognormal GOF Test Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.205 Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level			Approximate Chi Square Value (0.05)	4.963	
Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	Adjusted Level of Significance	0.029	Adjusted Chi Square Value	4.32	
95% Approximate Gamma UCL (use when n>=50) 1319 95% Adjusted Gamma UCL (use when n<50)	As	suming Gan	nma Distribution		
Lognormal GOF Test Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.205 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level	95% Approximate Gamma UCL (use when n>=50)	1319	95% Adjusted Gamma UCL (use when n<50)	1516	
Shapiro Wilk Test Statistic 0.933 Shapiro Wilk Lognormal GOF Test 5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.205 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level		Lognorma	I GOF Test		
5% Shapiro Wilk Critical Value 0.859 Data appear Lognormal at 5% Significance Level Lilliefors Test Statistic 0.205 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level	Shapiro Wilk Test Statistic	0.933	Shapiro Wilk Lognormal GOF Test		
Lilliefors Test Statistic 0.205 Lilliefors Lognormal GOF Test 5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level	5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level		
5% Lilliefors Critical Value 0.243 Data appear Lognormal at 5% Significance Level	Lilliefors Test Statistic	0.205	Lilliefors Lognormal GOF Test		
	5% Lilliefors Critical Value	0.243	Data appear Lognormal at 5% Significance Level		

Hinton,	WV
---------	----

	Lognorm	al Statistics		
Minimum of Logged Data	1.548	Mean of logged Data	5.244	
Maximum of Logged Data	8.319	SD of logged Data	1.657	
		1		
Assu	iming Logn	ormal Distribution		
95% H-UCL	6177	90% Chebyshev (MVUE) UCL	1552	
95% Chebyshev (MVUE) UCL	1982	97.5% Chebyshev (MVUE) UCL	2578	
99% Chebyshev (MVUE) UCL	3750			
Nonparame	etric Distrib	ution Free UCL Statistics		
Data appear to follow a	Discernible	Distribution at 5% Significance Level		
Nonpar	ametric Di	stribution Free UCLs		
95% CLT UCL	1100	95% Jackknife UCL	1150	
95% Standard Bootstrap UCL	1088	95% Bootstrap-t UCL	3356	
95% Hall's Bootstrap UCL	3226	95% Percentile Bootstrap UCL	1200	
95% BCA Bootstrap UCL	1557			
90% Chebyshev(Mean, Sd) UCL	1542	95% Chebyshev(Mean, Sd) UCL	1985	
97.5% Chebyshev(Mean, Sd) UCL	2599	99% Chebyshev(Mean, Sd) UCL	3806	
	Suggested	I UCL to Use		
95% Adjusted Gamma UCL	1516			
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL.		
Recommendations are bas	sed upon da	ata size, data distribution, and skewness.		
These recommendations are based upon the resu	Its of the sir	mulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

	General	Statistics	
Total Number of Observations	12	Number of Distinct Observations	11
		Number of Missing Observations	2
Minimum	24	Mean	2408
Maximum	17000	Median	1010
SD	4653	Std. Error of Mean	1343
Coefficient of Variation	1.933	Skewness	3.313
		1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.474	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.409	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Normal at 5% Significance Level	
Data Not	Normal at 8	% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4820	95% Adjusted-CLT UCL (Chen-1995)	5990
		95% Modified-t UCL (Johnson-1978)	5034
		· · · · ·	
	Gamma	GOF Test	
A-D Test Statistic	0.812	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.776	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.24	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value 0.257 Detected data appear Gamma Distributed at 5% Significance Level		ce Level	
Detected data follow Ap	pr. Gamma	Distribution at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.61	k star (bias corrected MLE)	0.513
Theta hat (MLE)	3944	Theta star (bias corrected MLE)	4690
nu hat (MLE)	14.65	nu star (bias corrected)	12.32
MLE Mean (bias corrected)	2408	MLE Sd (bias corrected)	3360
		Approximate Chi Square Value (0.05)	5.44
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	4.76
Ass	suming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50)	5454	95% Adjusted Gamma UCL (use when n<50)	6233
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.905	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.259	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.243	Data Not Lognormal at 5% Significance Level	

Indeno(1,2,3-cd)pyrene

Hinton,	wv
---------	----

	Lognorma	al Statistics				
Minimum of Logged Data	3.178	Mean of logged Data	6.777			
Maximum of Logged Data	9.741	SD of logged Data	1.605			
		1				
Ass	uming Logno	ormal Distribution				
95% H-UCL	23287	90% Chebyshev (MVUE) UCL	6592			
95% Chebyshev (MVUE) UCL	8395	97.5% Chebyshev (MVUE) UCL	10897			
99% Chebyshev (MVUE) UCL	15811					
	I					
Nonparame	etric Distribu	tion Free UCL Statistics				
Data appear to follow a	Discernible	Distribution at 5% Significance Level				
Nonpa	rametric Dis	tribution Free UCLs				
95% CLT UCL	4617	95% Jackknife UCL	4820			
95% Standard Bootstrap UCL	4483	95% Bootstrap-t UCL	14161			
95% Hall's Bootstrap UCL	14076	95% Percentile Bootstrap UCL	4885			
95% BCA Bootstrap UCL	6508					
90% Chebyshev(Mean, Sd) UCL	6438	95% Chebyshev(Mean, Sd) UCL	8263			
97.5% Chebyshev(Mean, Sd) UCL	10797	99% Chebyshev(Mean, Sd) UCL	15773			
		· · · · · ·				
	Suggested	UCL to Use				
95% Adjusted Gamma UCL	6233					
When a data set follows an approx	imate (e.g., i	normal) distribution passing one of the GOF test				
When applicable, it is suggested to use a UCL b	ased upon a	distribution (e.g., gamma) passing both GOF tests in ProUCL				
Note: Suggestions regarding the selection of a 95%	5 UCL are pr	ovided to help the user to select the most appropriate 95% UCL				
Recommendations are bas	Recommendations are based upon data size, data distribution, and skewness.					
These recommendations are based upon the resu	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).					
However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	an.			

UCL Statistics for Data Sets with Non-Detects User Selected Options ProUCL 5.13/28/2024 11:28:19 AM Date/Time of Computation From File WorkSheet.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000 Antimony General Statistics Total Number of Observations 11 Number of Distinct Observations 10 Number of Detects 9 Number of Non-Detects 2 Number of Distinct Detects 8 Number of Distinct Non-Detects 2 Minimum Detect Minimum Non-Detect 3.7 1.4 Maximum Detect 49 Maximum Non-Detect 4.5 18.18% Variance Detects 256.7 Percent Non-Detects 10.87 16.02 Mean Detects SD Detects Median Detects 2.8 CV Detects 1.474 Skewness Detects 2.114 Kurtosis Detects 4.274 Mean of Logged Detects 1.616 1.227 SD of Logged Detects Normal GOF Test on Detects Only Shapiro Wilk Test Statistic 0.657 Shapiro Wilk GOF Test 5% Shapiro Wilk Critical Value Detected Data Not Normal at 5% Significance Level 0.829 Lilliefors Test Statistic 0.348 Lilliefors GOF Test 5% Lilliefors Critical Value 0.274 Detected Data Not Normal at 5% Significance Level Detected Data Not Normal at 5% Significance Level Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs KM Mean 9.339 KM Standard Error of Mean 4.493 95% KM (BCA) UCL KM SD 14.04 17.76 95% KM (t) UCL 95% KM (Percentile Bootstrap) UCL 17.48 17.6 95% KM (z) UCL 95% KM Bootstrap t UCL 16.73 47.75 90% KM Chebyshev UCL 22.82 95% KM Chebyshev UCL 28.92 97.5% KM Chebyshev UCL 37.4 99% KM Chebyshev UCL 54.04 Gamma GOF Tests on Detected Observations Only A-D Test Statistic 0.944 Anderson-Darling GOF Test Detected Data Not Gamma Distributed at 5% Significance Level 5% A-D Critical Value 0.751 K-S Test Statistic 0.348 Kolmogorov-Smirnov GOF 5% K-S Critical Value 0.289 Detected Data Not Gamma Distributed at 5% Significance Level Detected Data Not Gamma Distributed at 5% Significance Level Gamma Statistics on Detected Data Only 0.774 k hat (MLE) k star (bias corrected MLE) 0.59 Theta hat (MLE) 14.03 Theta star (bias corrected MLE) 18.41 nu hat (MLE) 13.94 10.63 nu star (bias corrected) Mean (detects) 10.87

ProUCL Outputs - All Surface Soil Human Health and Ecological Risk Assessment Former Hinton Ice House

Hinton, WV

	NDs with many tied observations at multiple DLs	has > 50%	GROS may not be used when data se
	s < 10 ospecially when the sample size is small (e.g. < 15.20)		CPOS may not be used when ketar of detects is s
	s < 1.0, especially when the sample size is small (e.g., < 15-20)		GROSTINAY HOLDE USED WHET KSIAL OF DELECTS IS S
	yield incorrect values of UCLs and BTVs	nethod may	For such situations, GROS n
	en the sample size is small.	ally true whe	This is especia
	y be computed using gamma distribution on KM estimates	nd UCLs ma	For gamma distributed detected data, BTVs ar
9.0	Mean	1.041	Minimum
2.8	Median	49	Maximum
1.0	CV	14.87	SD
0.5	k star (bias corrected MLE)	0.691	k hat (MLE)
16	Theta star (bias corrected MLE)	13.15	Theta hat (MLE)
12	nu star (bias corrected)	15.2	nu hat (MLE)
		0.0278	Adjusted Level of Significance (β)
4.	Adjusted Chi Square Value (12.38, β)	5.481	Approximate Chi Square Value (12.38, α)
23	95% Gamma Adjusted UCL (use when n<50)	20.52	95% Gamma Approximate UCL (use when n>=50)

Esumates of Gamma Parameters using KM Estimates				
Mean (KM)	9.339	SD (KM)	14.04	
Variance (KM)	197.2	SE of Mean (KM)	4.493	
k hat (KM)	0.442	k star (KM)	0.382	
nu hat (KM)	9.729	nu star (KM)	8.409	
theta hat (KM)	21.12	theta star (KM)	24.43	
80% gamma percentile (KM)	14.99	90% gamma percentile (KM)	26.59	
95% gamma percentile (KM)	39.42	99% gamma percentile (KM)	71.83	

Gamma Kaplan-Meier (KM) Statistics			
Approximate Chi Square Value (8.41, α)	2.974	Adjusted Chi Square Value (8.41, β)	2.472
95% Gamma Approximate KM-UCL (use when n>=50)	26.41	95% Gamma Adjusted KM-UCL (use when n<50)	31.76

Lognormal GOF Test on Detected Observations Only				
Shapiro Wilk Test Statistic	0.855	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.829	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.301	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.274	Detected Data Not Lognormal at 5% Significance Level		
Detected Data appear A	pproximate	Lognormal at 5% Significance Level		

Lognormal ROS Statistics Using Imputed Non-Detects							
Mean in Original Scale	9.402	Mean in Log Scale	1.51				
SD in Original Scale	14.69	SD in Log Scale	1.122				
95% t UCL (assumes normality of ROS data)	17.43	95% Percentile Bootstrap UCL	17.1				
95% BCA Bootstrap UCL	19.59	95% Bootstrap t UCL	48.6				
95% H-UCL (Log ROS)	26.81						
Statistics using KM estimates of	on Logged I	Data and Assuming Lognormal Distribution					

KM Mean (logged)	1.479	KM Geo Mean	4.388
KM SD (logged)	1.093	95% Critical H Value (KM-Log)	3.18
KM Standard Error of Mean (logged)	0.353	95% H-UCL (KM -Log)	23.95
KM SD (logged)	1.093	95% Critical H Value (KM-Log)	3.18
KM Standard Error of Mean (logged)	0.353		

DL/2 Statistics				
DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	9.264	Mean in Log Scale	1.452	
SD in Original Scale	14.77	SD in Log Scale	1.157	
95% t UCL (Assumes normality)	17.33	95% H-Stat UCL	28	
DL/2 is not a recommended me	thod, provi	ded for comparisons and historical reasons		
Nonparamet	ric Distribu	tion Free UCL Statistics		
Detected Data appear Approxi	mate Logn	ormal Distributed at 5% Significance Level		
	Suggested	UCL to Use		
95% KM (Chebyshev) UCL	28.92			
		· · · · · ·		
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.		
Recommendations are base	ed upon da	ta size, data distribution, and skewness.		
These recommendations are based upon the result	s of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real Wo	orld data se	ts; for additional insight the user may want to consult a statisticia	ın.	

	UCL Statis	tics for Data	a Sets with Non-Detects				
User Selected Ontions							
Date/Time of Computation	ProUCL 5 14/1/2024 11	08·59 AM					
From File	WorkSheet.xls	orkSheet.xls					
Full Precision	OFF						
Confidence Coefficient	95%						
Number of Bootstrap Operations	2000						
Aroclor-1254							
		General	Statistics				
Tota	Number of Observations	11	Number of Distinct Observations	10			
			Number of Missing Observations	3			
	Number of Detects	2	Number of Non-Detects	9			
N	umber of Distinct Detects	2	Number of Distinct Non-Detects	8			
	Minimum Detect	180	Minimum Non-Detect	71			
	Maximum Detect	350	Maximum Non-Detect	230			
	Variance Detects	14450	Percent Non-Detects	81.82%			
	Mean Detects	265	SD Detects	120.2			
	Median Detects	265	CV Detects	0.454			
	Skewness Detects	N/A	Kurtosis Detects	N/A			
	Mean of Logged Detects	5.525	SD of Logged Detects	0.47			
I			קונו טו דפוומטופ גומווגוונג מווע פגוווומופג.				
	Norm	al GOF Tes	st on Detects Only				
	Not En	ough Data te	o Perform GOF Test				
14 1							
Kaplan-	Meler (KM) Statistics usi	ng Normal (Critical Values and other Nonparametric UCLs				
Kaplan-	Meler (KM) Statistics usi KM Mean	ng Normal C 107.4	Critical Values and other Nonparametric UCLs KM Standard Error of Mean	35.86			
Kapian-	Meler (KM) Statistics using KM Mean KM SD	ng Normal C 107.4 83.39	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL	35.86 N/A			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL	ng Normal C 107.4 83.39 172.4	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL	35.86 N/A N/A			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL	ng Normal C 107.4 83.39 172.4 166.4	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL	35.86 N/A N/A N/A			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	ng Normal C 107.4 83.39 172.4 166.4 214.9	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL	35.86 N/A N/A N/A 263.7			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	35.86 N/A N/A N/A 263.7 464.2			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL	35.86 N/A N/A N/A 263.7 464.2			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 7.5% KM Chebyshev UCL Gamma GOF	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D pugh Data to	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	35.86 N/A N/A 263.7 464.2			
Карlan-	Meler (KM) Statistics usl KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not End	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D bugh Data to	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL	35.86 N/A N/A N/A 263.7 464.2			
Kapian-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 7.5% KM Chebyshev UCL Gamma GOF Not En Gamma	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D bugh Data to Statistics on	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Deperform GOF Test n Detected Data Only	35.86 N/A N/A 263.7 464.2			
Каріал-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (1) UCL 95% KM (2) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not En Gamma k hat (MLE)	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D ough Data to Statistics on 9.374	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Deerform GOF Test n Detected Data Only k star (bias corrected MLE)	35.86 N/A N/A 263.7 464.2 N/A			
97	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL Gamma GOF Not En Gamma k hat (MLE) Theta hat (MLE)	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D ough Data te Statistics of 9.374 28.27	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL etected Observations Only Deferrm GOF Test Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE)	35.86 N/A N/A N/A 263.7 464.2 N/A			
97 97	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (z) UCL 90% KM Chebyshev UCL 7.5% KM Chebyshev UCL Gamma GOF Not En Gamma k hat (MLE) Theta hat (MLE) nu hat (MLE)	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D bugh Data to Statistics on 9.374 28.27 37.5	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL Petected Observations Only Perform GOF Test Detected Data Only k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	35.86 N/A N/A 263.7 464.2 N/A N/A			
Kaplan-	Meler (KM) Statistics usi KM Mean KM SD 95% KM (t) UCL 95% KM (c) UCL 90% KM Chebyshev UCL 5% KM Chebyshev UCL 5% KM Chebyshev UCL 5% KM Chebyshev UCL 5% KM Chebyshev UCL Chebyshev UCL 5% KM Chebyshev UCL Chebyshev UCL 7.5% KM Chebyshev UCL 7	ng Normal C 107.4 83.39 172.4 166.4 214.9 331.3 Tests on D ough Data to Statistics on 9.374 28.27 37.5 265	Critical Values and other Nonparametric UCLs KM Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL 09% KM Chebyshev UCL 09% KM Chebyshev UCL 00% KM Cheb	35.86 N/A N/A 263.7 464.2 N/A N/A			

ProUCL Outputs - Surface Soil without SS-04 Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, WV

Estimates of Ga	mma Parameter	s using KM Estimates	
Mean (KM)	107.4	SD (KM)	83.39
Variance (KM)	6954	SE of Mean (KM)	35.86
k hat (KM)	1.658	k star (KM)	1.266
nu hat (KM)	36.48	nu star (KM)	27.86
theta hat (KM)	64.76	theta star (KM)	84.78
80% gamma percentile (KM)	169.1	90% gamma percentile (KM)	233.2
95% gamma percentile (KM)	296.2	99% gamma percentile (KM)	440.1
Gamma	Kaplan-Meier (I	KM) Statistics	
		Adjusted Level of Significance (β)	0.0278
	1/ 00	Adjusted Chi Square Value (27.86, β)	15.44
Approximate Chi Square Value (27.86, α)	16.82		102.0
Approximate Chi Square Value (27.86, α) amma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor	Test on Detection	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test	193.8
Approximate Chi Square Value (27.86, α) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enot Lognormal ROS	Test on Detection Test on Detection ugh Data to Perf	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects	4 101
Approximate Chi Square Value (27.86, a) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enou Lognormal ROS Mean in Original Scale	Test on Detector ugh Data to Perf Statistics Using 84.81	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale	4.101
Approximate Chi Square Value (27.86, α) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enou Lognormal ROS Mean in Original Scale SD in Original Scale	16.82 177.9 F Test on Detect ugh Data to Perf Statistics Using 84.81 97.17 127.0	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale	4.101
Approximate Chi Square Value (27.86, α) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Eno Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	16.82 177.9 • Test on Detection ugh Data to Perf Statistics Using 84.81 97.17 137.9	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	4.101 0.741 137.5
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	16.82 177.9 Test on Detection ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 140.0	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	4.101 0.741 137.5 586.6
Approximate Chi Square Value (27.86, a) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	16.82 177.9 F Test on Detection ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	4.101 0.741 137.5 586.6
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates o	16.82 177.9 F Test on Detect ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9 n Logged Data a	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	4.101 0.741 137.5 586.6
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Eno Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates o KM Mean (logged)	16.82 177.9 • Test on Detection ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9 n Logged Data a 4.502	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL	4.101 0.741 137.5 586.6 90.17
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates o KM Mean (logged) KM SD (logged)	16.82 177.9 F Test on Detection ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9 n Logged Data a 4.502 0.512	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log)	4.101 0.741 137.5 586.6 90.17 2.191
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enor Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates o KM Mean (logged) KM SD (logged) KM Standard Error of Mean (logged)	16.82 177.9 F Test on Detect ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9 n Logged Data a 4.502 0.512 0.222	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Imputed Non-Detects Detects SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL and Assuming Lognormal Distribution KM Geo Mean 95% Critical H Value (KM-Log) 95% H-UCL (KM -Log)	4.101 0.741 137.5 586.6 90.17 2.191 146.5
Approximate Chi Square Value (27.86, d) iamma Approximate KM-UCL (use when n>=50) Lognormal GOF Not Enou Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) Statistics using KM estimates o KM Mean (logged) KM SD (logged) KM SD (logged)	16.82 177.9 Test on Detect ugh Data to Perf Statistics Using 84.81 97.17 137.9 168.4 143.9 n Logged Data a 4.502 0.512 0.222 0.512	95% Gamma Adjusted KM-UCL (use when n<50) ed Observations Only orm GOF Test Imputed Non-Detects Imputed Non-Detects SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 05% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log) 95% Critical H Value (KM-Log)	4.101 0.741 137.5 586.6 90.17 2.191 146.5 2.191

DL/2 Normal		DL/2 Log-Transformed		
Mean in Original Scale	85.82	Mean in Log Scale	4.069	
SD in Original Scale	99.15	SD in Log Scale	0.809	
95% t UCL (Assumes normality)	140	95% H-Stat UCL	159.7	
DL/2 is not a recommended me	ethod, provi	ded for comparisons and historical reasons		
Nonnarame	tric Distribu	tion Free UCL Statistics		

Nonpar	ametric	Distributi	on Free	UCL Statistics	
					-

Data do not follow a Discernible Distribution at 5% Significance Level

Suggested UCL to Use					
95% KM (t) UCL	172.4	KM H-UCL	146.5		
95% KM (BCA) UCL	N/A				
Warning: One or n	nore Recom	mended UCL(s) not available!			
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.					
Recommendations are bas	ed upon dat	ta size, data distribution, and skewness.			
These recommendations are based upon the resul	Its of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).			
However, simulations results will not cover all Real W	'orld data se	ts; for additional insight the user may want to consult a statisticia	an.		

Hinton,	wv
---------	----

Arsenic			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	3
Minimum	4.4	Mean	15.95
Maximum	52	Median	10
SD	14.57	Std. Error of Mean	4.394
Coefficient of Variation	0.913	Skewness	1.852
	Normal (SOF Test	
Shapiro Wilk Test Statistic	0.768	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.226		
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level	
Data appear Appr	oximate No	rmal at 5% Significance Level	
Ass	suming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	23.92	95% Adjusted-CLT UCL (Chen-1995)	25.8
		95% Modified-t UCL (Johnson-1978)	24.33
	0		
A D Toot Statistic		GUF Test	
A-D Test Statistic	0.499	Anderson-Danning Gamma Gor Test	
K-S Test Statistic	0.74	Kolmogorov-Smirnov Gamma GOF Test	e Level
5% K-S Critical Value	0.259	Detected data appear Gamma Distributed at 5% Significance	e Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.826	k star (bias corrected MLE)	1.389
Theta hat (MLE)	8.737	Theta star (bias corrected MLE)	11.49
nu hat (MLE)	40.17	nu star (bias corrected)	30.55
MLE Mean (bias corrected)	15.95	MLE Sd (bias corrected)	13.54
		Approximate Chi Square Value (0.05)	18.93
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	17.45
A		mo Distribution	
95% Approximate Gamma LICL (use when n>-50)	25 75	95% Adjusted Gamma LICL (use when n< 50)	27.94
	23.75		27.74
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.943	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.172	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Date	1 / 22	Noon of logged Data	2 172
Maximum of Logged Data	3 051	SD of logged Data	0.772
	5.751	SP or rogged bala	0.112
Minimum of Logged Data Maximum of Logged Data	1.482 3.951	Mean of logged Data SD of logged Data	2.472 0.772

Assu	ming Logno	ormal Distribution	
95% H-UCL	30	90% Chebyshev (MVUE) UCL	26.69
95% Chebyshev (MVUE) UCL	31.78	97.5% Chebyshev (MVUE) UCL	38.85
99% Chebyshev (MVUE) UCL	52.74		
Negering			
Data appear to follow a L	Discernible	Distribution at 5% Significance Level	
Nonpara	ametric Dis	tribution Free UCLs	
95% CLT UCL	23.18	95% Jackknife UCL	23.92
95% Standard Bootstrap UCL	22.97	95% Bootstrap-t UCL	34.8
95% Hall's Bootstrap UCL	57.66	95% Percentile Bootstrap UCL	23.6
95% BCA Bootstrap UCL	25.83		
90% Chebyshev(Mean, Sd) UCL	29.14	95% Chebyshev(Mean, Sd) UCL	35.11
97.5% Chebyshev(Mean, Sd) UCL	43.39	99% Chebyshev(Mean, Sd) UCL	59.67
	Suggested		
05% Student's t LCL	22 02		
7570 Student S-t UCL	23.72		
When a data set follows an approxi	mate (e.a.	normal) distribution passing one of the GOE test	
When applicable, it is suggested to use a LICL ba	ised upon a	distribution (e.g., gamma) passing both GOE tests in ProLICI	
Note: Suggestions regarding the selection of a 95%	UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are bas	ed upon da	a size, data distribution, and skewness.	
These recommendations are based upon the resul	ts of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.			

 н	int	ton	۱, '	w	۷
			-		

Iron			
	General	Statistics	
Total Number of Observations	10	Number of Distinct Observations	9
		Number of Missing Observations	3
Minimum	8000	Mean	26400
Maximum	61000	Median	25000
SD	14600	Std. Error of Mean	4617
Coefficient of Variation	0.553	Skewness	1.447
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.883	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.226	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
Data appe	ar Normal a	t 5% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	34863	95% Adjusted-CLT UCL (Chen-1995)	36251
		95% Modified-t UCL (Johnson-1978)	35215
	Gamma		
A-D Test Statistic	0.241	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.73	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.166	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	3.922	k star (bias corrected MLE)	2.812
Theta hat (MLE)	6731	Theta star (bias corrected MLE)	9388
nu hat (MLE)	78.44	nu star (bias corrected)	56.24
MLE Mean (bias corrected)	26400	MLE Sd (bias corrected)	15743
		Approximate Chi Square Value (0.05)	40.01
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	37.64
As	suming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	37114	95% Adjusted Gamma UCL (use when n<50)	39450

	Hinton, WV
est	

Lognormal GOF Test				
Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.162	Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level		
Data appear	Lognormal	at 5% Significance Level		
	Lognorma	I Statistics		
Minimum of Logged Data	8.987	Mean of logged Data	10.05	
Maximum of Logged Data	11.02	SD of logged Data	0.556	
Assu	uming Logno	rmal Distribution		
95% H-UCL	41335	90% Chebyshev (MVUE) UCL	40816	
95% Chebyshev (MVUE) UCL	47290	97.5% Chebyshev (MVUE) UCL	56277	
99% Chebyshev (MVUE) UCL	73929			
Nonparame	etric Distribut	tion Free UCL Statistics		
Data appear to follow a	Discernible I	Distribution at 5% Significance Level		
Nonpa	rametric Dist	ribution Free UCLs		
95% CLT UCL	33994	95% Jackknife UCL	34863	
95% Standard Bootstrap UCL	33702	95% Bootstrap-t UCL	37973	
95% Hall's Bootstrap UCL	71818	95% Percentile Bootstrap UCL	34600	
95% BCA Bootstrap UCL	36200			
90% Chebyshev(Mean, Sd) UCL	40251	95% Chebyshev(Mean, Sd) UCL	46525	
97.5% Chebyshev(Mean, Sd) UCL	55232	99% Chebyshev(Mean, Sd) UCL	72337	
	Suggested			
95% Student's-t LIC	34863			
	01000			
Note: Suggestions regarding the selection of a 95%	5 UCL are pro	ovided to help the user to select the most appropriate 95% UCL.		
Recommendations are bas	sed upon data	a size, data distribution, and skewness.		
These recommendations are based upon the resu	Its of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Real W	/orld data set	s; for additional insight the user may want to consult a statisticia	an.	

Hinton,	w٧

Lead			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	3
Minimum	9.3	Mean	391.8
Maximum	1400	Median	240
SD	399.9	Std. Error of Mean	120.6
Coefficient of Variation	1.021	Skewness	1.83
	Normal (COE Test	
Shaniro Wilk Test Statistic	0.808	Shaniro Wilk GOE Test	
5% Shapiro Wilk Critical Value	0.000	Data Not Normal at 5% Significance Level	
	0.00		
5% Lilliofors Critical Value	0.247	Data appear Normal at 5% Significance Level	
Data appear Appr	oximate No	Irmal at 5% Significance Level	
Ass	suming Nor	mal Distribution	
95% Normal UCL	5	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	610.3	95% Adjusted-CLT UCL (Chen-1995)	661.1
		95% Modified-t UCL (Johnson-1978)	621.4
	Gamma	GOF Test	
A-D Test Statistic	0.228	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.751	Detected data appear Gamma Distributed at 5% Significance	ce Level
K-S Test Statistic	0.144	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.262	Detected data appear Gamma Distributed at 5% Significand	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.047	k star (bias corrected MLE)	0.822
Theta hat (MLE)	374.3	Theta star (bias corrected MLE)	476.7
nu hat (MLE)	23.03	nu star (bias corrected)	18.08
MLE Mean (bias corrected)	391.8	MLE Sd (bias corrected)	432.1
		Approximate Chi Square Value (0.05)	9.45
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	8.45
		1	
Ass	uming Gam	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	749.6	95% Adjusted Gamma UCL (use when n<50)	838.3
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.901	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.201	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level	
Data appear	Lognormal	at 5% Significance Level	

		Hinton, WV
Data	5.422	

	Lognorma	al Statistics	
Minimum of Logged Data	2.23	Mean of logged Data	5.42
Maximum of Logged Data	7.244	SD of logged Data	1.3
1224	imina Loan	ormal Distribution	
95% H-UCI	2437	90% Chebyshev (MVLIE) LICL	1082
95% Chebyshev (MVUF) UCL	1357	97.5% Chebyshev (MVUE) UCL	1739
99% Chebyshev (MVUE) UCL	2488		
Nonparame	etric Distribu	ition Free UCL Statistics	
Data appear to follow a	Discernible	Distribution at 5% Significance Level	
Nonpa	ametric Dis	tribution Free LICI's	
95% CLT LICL	590 1	95% Jackknife LICI	610 3
95% Standard Bootstran UCI	577.2	95% Bootstrap-t LICL	776 5
95% Hall's Bootstrap UCL	1434	95% Percentile Bootstran LICL	587.2
95% BCA Bootstrap UCL	657.3		007.2
90% Chebyshev(Mean, Sd) UCL	753.4	95% Chebyshev(Mean, Sd) UCL	917.3
97.5% Chebyshev(Mean, Sd) UCL	1145	99% Chebyshev(Mean, Sd) UCL	1591
	Suggested	UCL to Use	
95% Student's-t UCL	610.3		
When a data set follows an approx	imate (e a	normal) distribution passing one of the GOE test	
When applicable, it is suggested to use a LICL ba	ased upon a	distribution (e.g., gamma) passing both GOE tests in ProLICI	
Note: Suggestions regarding the selection of a 95%	UCL are pr	rovided to help the user to select the most appropriate 95% UCL.	
Recommendations are bas	sed upon da	ta size, data distribution, and skewness.	
These recommendations are based upon the resu	Its of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
		ts: for additional insight the user may want to consult a statisticia	an

Hinton,	wv

nzo(a)anthracene			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	3
Minimum	19	Mean	1607
Maximum	3700	Median	1100
SD	1327	Std. Error of Mean	400
Coefficient of Variation	0.826	Skewness	0.465
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.194	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level	
Data appe	ar Normal a	t 5% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2332	95% Adjusted-CLT UCL (Chen-1995) 2325	
		95% Modified-t UCL (Johnson-1978)	2342
	Gamma	GOF Test	
A-D Test Statistic	0.385	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.756	Detected data appear Gamma Distributed at 5% Significan	ce Level
K-S Test Statistic	0.168	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.263	Detected data appear Gamma Distributed at 5% Significan	ce Level
Detected data appea	r Gamma Di	stributed at 5% Significance Level	
	Camma	Statistics	
k hat (MLF)	0.909	k star (bias corrected MLF)	0 722
Theta hat (MLF)	1768	Theta star (bias corrected MLE)	2227
nu bat (MLE)	20	nu star (bias corrected)	15.88
MLE Mean (bias corrected)	1607	MLE Sd (bias corrected)	1892
		Approximate Chi Square Value (0.05)	7 878
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	6.978
	I	1	
As	suming Gam		
95% Approximate Gamma UCL (use when n>=50))	3240	95% Adjusted Gamma UCL (use when n<50)	3658

Lognormal GOF Test			
Shapiro Wilk Test Statistic	0.834	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.249	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level	
Data appear Appro	ximate Logr	normal at 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	2.944	Mean of logged Data	6.74
Maximum of Logged Data	8.216	SD of logged Data	1.596
Assu	uming Logno	ormal Distribution	
95% H-UCL	25697	90% Chebyshev (MVUE) UCL	6263
95% Chebyshev (MVUE) UCL	7988	97.5% Chebyshev (MVUE) UCL	10383
99% Chebyshev (MVUE) UCL	15087		
Nonparame	etric Distribu	ition Free UCL Statistics	
Data appear to follow a	Discernible	Distribution at 5% Significance Level	
Nonpa	rametric Dis	tribution Free UCLs	
95% CLT UCL	2265	95% Jackknife UCL	2332
95% Standard Bootstrap UCL	2246	95% Bootstrap-t UCL	2396
95% Hall's Bootstrap UCL	2227	95% Percentile Bootstrap UCL	2247
95% BCA Bootstrap UCL	2265		
90% Chebyshev(Mean, Sd) UCL	2807	95% Chebyshev(Mean, Sd) UCL	3351
97.5% Chebyshev(Mean, Sd) UCL	4105	99% Chebyshev(Mean, Sd) UCL	5588
	Suggested	UCL to Use	
95% Student's-t UCL	2332		
Note: Suggestions regarding the selection of a 95%	5 UCL are pr	ovided to help the user to select the most appropriate 95% UCL	
Recommendations are bas	sed upon da	ta size, data distribution, and skewness.	
These recommendations are based upon the resu	Its of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real W	/orld data se	ts; for additional insight the user may want to consult a statisticia	an.

enzo(a)pyrene			
	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	3
Minimum	23	Mean	1674
Maximum	4000	Median	1200
SD	1341	Std. Error of Mean	404.2
Coefficient of Variation	0.801	Skewness	0.591
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.918	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level	
	0.184		
5% Lilliefors Critical Value	0.164	Data appear Normal at 5% Significance Level	
Data appe	ar Normal at	t 5% Significance Level	
As	suming Norr	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	2407	95% Adjusted-CLT UCL (Chen-1995)	2416
		95% Modified-t UCL (Johnson-1978)	2419
	Gamma	GOF Test	
A-D Test Statistic	0.432	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.753	Detected data appear Gamma Distributed at 5% Significance Leve	
K-S Test Statistic	0.206	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.263	Detected data appear Gamma Distributed at 5% Significance Level	
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.962	k star (bias corrected MLE)	0.76
Theta hat (MLE)	1740	Theta star (bias corrected MLE)	2202
nu hat (MLE)	21.16	nu star (bias corrected)	16.72
MLE Mean (bias corrected)	1674	MLE Sd (bias corrected)	1920
		Approximate Chi Square Value (0.05)	8.476
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	7.537
Acc.		ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	3303	95% Adjusted Gamma UCL (use when n<50)	3714
			0711
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.821	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.283	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal at	5% Significance Level	

Hinton,	wv
---------	----

	Lognorma	al Statistics	
Minimum of Logged Data	3.135	Mean of logged Data	6.82
Maximum of Logged Data	8.294	SD of logged Data	1.551
المحالي	imina Loan	ormal Distribution	
	12221		6210
	23321		10422
	15107	97.5% Chebyshev (MVOE) OCL	10432
99% Chebyshev (MIVUE) UCL	15127		
Nonparame	tric Distribu	ution Free UCL Statistics	
Data appear to follow a	Discernible	Distribution at 5% Significance Level	
Nonpar	ametric Dis	stribution Free UCLs	
95% CLT UCL	2339	95% Jackknife UCL	2407
95% Standard Bootstrap UCL	2299	95% Bootstrap-t UCL	2519
95% Hall's Bootstrap UCL	2550	95% Percentile Bootstrap UCL	2310
95% BCA Bootstrap UCL	2378		
90% Chebyshev(Mean, Sd) UCL	2887	95% Chebyshev(Mean, Sd) UCL	3436
97.5% Chebyshev(Mean, Sd) UCL	4198	99% Chebyshev(Mean, Sd) UCL	5696
	Suggested	UCL to Use	
95% Student's-t UCL	2407		
Note: Suggestions regarding the selection of a 95%	UCL are pr	rovided to help the user to select the most appropriate 95% UCL.	•
Recommendations are bas	ed upon da	ta size, data distribution, and skewness.	
These recommendations are based upon the resu	Its of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.			

Number of Distinct Observations

Number of Missing Observations

Shapiro Wilk GOF Test

Data appear Normal at 5% Significance Level

Lilliefors GOF Test

Data appear Normal at 5% Significance Level

10

3

2517

2200

547.5

0.311

Mean

Median

Skewness

Std. Error of Mean

Benzo(b)fluoranthene			
	General	Statistics	
Total Number of Observations	11		
Minimum	51		
Maximum	5600		
SD	1816		
Coefficient of Variation	0.721		
	Normal GOF Te		
Shapiro Wilk Test Statistic	0.951		
5% Shapiro Wilk Critical Value	0.85		
Lilliefors Test Statistic	0.167		
5% Lilliefors Critical Value	0.251		

Ass	suming Norn	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	3510	95% Adjusted-CLT UCL (Chen-1995)	3473
		95% Modified-t UCL (Johnson-1978)	3518
	Gamma C	GOF Test	
A-D Test Statistic	Gamma C 0.503	GOF Test Anderson-Darling Gamma GOF Test	
A-D Test Statistic 5% A-D Critical Value	Gamma C 0.503 0.75	GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significanc	e Lev
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Gamma C 0.503 0.75 0.227	GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significanc Kolmogorov-Smirnov Gamma GOF Test	ce Le

Gamma Statistics					
k hat (MLE)	1.109	k star (bias corrected MLE)	0.867		
Theta hat (MLE)	2270	Theta star (bias corrected MLE)	2903		
nu hat (MLE)	24.4	nu star (bias corrected)	19.08		
MLE Mean (bias corrected)	2517	MLE Sd (bias corrected)	2703		
		Approximate Chi Square Value (0.05)	10.18		
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	9.133		
Assuming Gamma Distribution					
95% Approximate Gamma UCL (use when n>=50))	4720	95% Adjusted Gamma UCL (use when n<50)	5259		
		Hinton, WV			
---	-------	------------			
Shapiro Wilk Lognormal GOF Test					
Data Not Lognormal at 5% Significance Level					
Lilliefors Lognormal GOF Test					
Data Not Lognormal at 5% Significance Level					
nce Level					
Mean of logged Data	7.317				
SD of logged Data	1.421				

Assuming Lognormal Distribution			
95% H-UCL	23420	90% Chebyshev (MVUE) UCL	8459
95% Chebyshev (MVUE) UCL	10683	97.5% Chebyshev (MVUE) UCL	13770
99% Chebyshev (MVUE) UCL	19834		

Lognormal GOF Test

0.807

0.85

0.298 0.251

3.932

8.631

Data Not Lognormal at 5% Significance

Lognormal Statistics

Shapiro Wilk Test Statistic

5% Lilliefors Critical Value

Minimum of Logged Data Maximum of Logged Data

Lilliefors Test Statistic

5% Shapiro Wilk Critical Value

Nonparametric Distribution Free UCL Statistics	
Data appear to follow a Discernible Distribution at 5% Significance Level	

Nonparametric Distribution Free UCLs					
95% CLT UCL	3418	95% Jackknife UCL	3510		
95% Standard Bootstrap UCL	3373	95% Bootstrap-t UCL	3621		
95% Hall's Bootstrap UCL	3490	95% Percentile Bootstrap UCL	3364		
95% BCA Bootstrap UCL	3414				
90% Chebyshev(Mean, Sd) UCL	4160	95% Chebyshev(Mean, Sd) UCL	4904		
97.5% Chebyshev(Mean, Sd) UCL	5936	99% Chebyshev(Mean, Sd) UCL	7965		
	Suggested	UCL to Use			
95% Student's-t UCL	3510				
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.					
Recommendations are based upon data size, data distribution, and skewness.					

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

8:39 AM on 4/23/2024

	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	3
Minimum	16	Mean	794 7
Maximum	2100	Median	790
SD	597.3	Std Frror of Mean	180.1
Coefficient of Variation	0.752	Skewness	0.886
	I		
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.144	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level	
Data appe	ar Normal a	t 5% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1121	95% Adjusted-CLT UCL (Chen-1995)	1142
		95% Modified-t UCL (Johnson-1978)	1129
	Gamma	GOF Test	
A-D Test Statistic	0.569	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significance	ce Level
K-S Test Statistic	0.263	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.262	Data Not Gamma Distributed at 5% Significance Leve	el
Detected data follow Ap	pr. Gamma	Distribution at 5% Significance Level	
	Camma	Statistics	
k bot (MLE)	1 102	k star (bias corrected MLE)	0.961
	721.2	Theta star (bias corrected MLE)	0.002
	24.24	nu star (bios corrected)	10.04
MLE Moan (bias corrected)	24.24 70/ 7	MLE Sd (bigs corrected)	854
	/74./	Approvimate Chi Square Value (0.05)	10.00
Adjusted Loyal of Significance	0 0 2 2 2		0.09
	0.0270	Aujusieu Chi Squale Value	9.003
As	suming Gam	nma Distribution	
	-		4//5
95% Approximate Gamma UCL (use when n>=50))	1494	95% Adjusted Gamma UCL (use when n<50)	1665

	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.798	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.328	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data Not Lognormal at 5% Significance Level	
Data Not L	ognormal a	t 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	2.773	Mean of logged Data	6.16
Maximum of Logged Data	7.65	SD of logged Data	1.432
I			
Assu	iming Logno	ormal Distribution	
058/11/101	7657	90% Chebyshev (MVUE) UCL	2705
95% H-UCL			
95% H-UCL 95% Chebyshev (MVUE) UCL	3418	97.5% Chebyshev (MVUE) UCL	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	3418 6354	97.5% Chebyshev (MVUE) UCL	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	3418 6354	97.5% Chebyshev (MVUE) UCL	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame	3418 6354 tric Distribu	97.5% Chebyshev (MVUE) UCL	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a D	3418 6354 tric Distribu Discernible	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I	3418 6354 tric Distribu Discernible	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar	3418 6354 tric Distribu Discernible ametric Dis	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL	3418 6354 tric Distribu Discernible ametric Dis	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL	4409
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	4409 1121 1197
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	4409 1121 1197 1095
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358 1145	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	4409 1121 1197 1095
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358 1145 1335	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL	4409 1121 1197 1095 1580
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358 1145 1335 1919	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	4409 1121 1197 1095 1580 2587
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358 1145 1335 1919	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	4409 1121 1197 1095 1580 2587
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonparame Data appear to follow a I Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	3418 6354 tric Distribu Discernible ametric Dis 1091 1078 1358 1145 1335 1919 Suggested	97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	4409 1121 1197 1095 1580 2587

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics					
Total Number of Observations	11	Number of Distinct Observations	10		
		Number of Missing Observations	3		
Minimum	4.7	Mean	243.1		
Maximum	610	Median	210		
SD	193.7	Std. Error of Mean	58.4		
Coefficient of Variation	0.797	Skewness	0.765		
		· · · · · · · · · · · · · · · · · · ·			
	Normal (GOF Test			
Shapiro Wilk Test Statistic	0.929	Shapiro Wilk GOF Test			
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level			
Lilliefors Test Statistic	0.204	Lilliefors GOF Test			
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level			
Data appe	ar Normal a	t 5% Significance Level			
As	suming Nori	mal Distribution			
95% Normal UCL		95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	348.9	95% Adjusted-CLT UCL (Chen-1995)	353.5		
		95% Modified-t UCL (Johnson-1978)	351.2		
	Gamma	GOF Test			
A-D Test Statistic	0.308	Anderson-Darling Gamma GOF Test			
5% A-D Critical Value	0.75	Detected data appear Gamma Distributed at 5% Significant	ce Level		
K-S Test Statistic	0.167	Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Critical Value	0.262	Detected data appear Gamma Distributed at 5% Significant	ce Level		
Detected data appear	Gamma Di	stributed at 5% Significance Level			
	Gamma	Statistics			
k hat (MLE)	1.082	k star (bias corrected MLE)	0.847		
Theta hat (MLE)	224.7	Theta star (bias corrected MLE)	286.8		
nu hat (MLE)	23.8	nu star (bias corrected)	18.64		
MLE Mean (bias corrected)	243.1	MLE Sd (bias corrected)	264		
		Approximate Chi Square Value (0.05)	9.858		
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	8.834		
		· · · · · · · · · · · · · · · · · · ·			
Assuming Gamma Distribution					

Assuming Gamma Distribution				
95% Approximate Gamma UCL (use when n>=50))	459.7	95% Adjusted Gamma UCL (use when n<50)	513	

Dibenzo(a,h)anthracene

Lognormal GOF Test					
Shapiro Wilk Test Statistic	0.844	Shapiro Wilk Lognormal GOF Test			
5% Shapiro Wilk Critical Value	0.85	Data Not Lognormal at 5% Significance Level			
Lilliefors Test Statistic	0.244	Lilliefors Lognormal GOF Test			
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level			
Data appear Appro	oximate Logi	normal at 5% Significance Level			
	Lognorma	al Statistics			
Minimum of Logged Data	1.548	Mean of logged Data	4.965		
Maximum of Logged Data	6.413	SD of logged Data	1.411		
Ass	uming Logno	ormal Distribution			
95% H-UCL	2148	90% Chebyshev (MVUE) UCL	792.3		
95% Chebyshev (MVUE) UCL	1000	97.5% Chebyshev (MVUE) UCL	1288		
99% Chebyshev (MVUE) UCL	1855				
Nonparame	etric Distribu	tion Free UCL Statistics			
Data appear to follow a	Discernible	Distribution at 5% Significance Level			
Nonpa	rametric Dis	tribution Free UCLs			
95% CLT UCL	339.1	95% Jackknife UCL	348.9		
95% Standard Bootstrap UCL	333.2	95% Bootstrap-t UCL	383.5		
95% Hall's Bootstrap UCL	382.4	95% Percentile Bootstrap UCL	338.1		
95% BCA Bootstrap UCL	345.9				
90% Chebyshev(Mean, Sd) UCL	418.3	95% Chebyshev(Mean, Sd) UCL	497.6		
97.5% Chebyshev(Mean, Sd) UCL	607.8	99% Chebyshev(Mean, Sd) UCL	824.2		
	•	*			
	Suggested UCL to Use				
95% Student's-t UCL	348.9				
		·			
Note: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.			
Recommendations are ba	sed upon da	ta size, data distribution, and skewness.			
These recommendations are based upon the resu	Its of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).			
However, simulations results will not cover all Real V	However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.				

Indeno(1,	2,3-cd)pyrene

	General	Statistics	
Total Number of Observations	11	Number of Distinct Observations	10
		Number of Missing Observations	3
Minimum	24	Mean	1081
Maximum	2500	Median	920
SD	767.4	Std. Error of Mean	231.4
Coefficient of Variation	0.71	Skewness	0.494
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.954	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.129	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Normal at 5% Significance Level	
Data appe	ar Normal a	t 5% Significance Level	
As	suming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1501	95% Adjusted-CLT UCL (Chen-1995)	1499
		95% Modified-t UCL (Johnson-1978)	1506
		· · · · · ·	
	Gamma	GOF Test	
A-D Test Statistic	0.519	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significant	ce Level
K-S Test Statistic	0.243	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.261	Detected data appear Gamma Distributed at 5% Significant	ce Level
Detected data appear	Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	1.184	k star (bias corrected MLE)	0.922
Theta hat (MLE)	913.2	Theta star (bias corrected MLE)	1173
nu hat (MLE)	26.05	nu star (bias corrected)	20.28
MLE Mean (bias corrected)	1081	MLE Sd (bias corrected)	1126
		Approximate Chi Square Value (0.05)	11.06
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	9.963
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	9.963
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	9.963
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.0278 suming Gan 1983	Adjusted Chi Square Value Market Chi Square Value Mark	9.963 2201
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.0278 suming Gan 1983	Adjusted Chi Square Value Adjusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50)	9.963
Adjusted Level of Significance As: 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	0.0278 suming Gan 1983 Lognorma	Adjusted Chi Square Value Adjusted Chi Square Value Market Chi Square Value Ma	9.963
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	0.0278 suming Gan 1983 Lognorma 0.799 0.85	Adjusted Chi Square Value Adjusted Chi Adjus	9.963
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.0278 suming Gan 1983 Lognorma 0.799 0.85 0.309	Adjusted Chi Square Value Adjusted Chi Square Value Market Chi Square Value Adjusted Chi Square Value Market Chi Square Value Market Chi Square Value Adjusted Chi Adjusted Chi Adjusted Adjusted Chi Adjusted Chi Adjusted Ad	9.963
Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.0278 suming Gan 1983 Lognorma 0.799 0.85 0.309 0.251	Adjusted Chi Square Value Adjusted Chi Square Value Maa Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Data Not Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data Not Lognormal at 5% Significance Level Data Not Lognormal at 5% Significance Level	9.963

Hinton,	wv
---------	----

	Lognorm	al Statistics	
Minimum of Logged Data	3.178	Mean of logged Data	6.508
Maximum of Logged Data	7.824	SD of logged Data	1.369
		1	
Assu	iming Logn	ormal Distribution	
95% H-UCL	8680	90% Chebyshev (MVUE) UCL	3478
95% Chebyshev (MVUE) UCL	4378	97.5% Chebyshev (MVUE) UCL	5627
99% Chebyshev (MVUE) UCL	8080		
Nonparame	tric Distrib	ution Free UCL Statistics	
Data appear to follow a	Discernible	Distribution at 5% Significance Level	
Nonpar	ametric Di	stribution Free UCLs	
95% CLT UCL	1462	95% Jackknife UCL	1501
95% Standard Bootstrap UCL	1451	95% Bootstrap-t UCL	1560
95% Hall's Bootstrap UCL	1544	95% Percentile Bootstrap UCL	1450
95% BCA Bootstrap UCL	1493		
90% Chebyshev(Mean, Sd) UCL	1775	95% Chebyshev(Mean, Sd) UCL	2090
97.5% Chebyshev(Mean, Sd) UCL	2526	99% Chebyshev(Mean, Sd) UCL	3384
	Suggested	I UCL to Use	
95% Student's-t UCL	1501		
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL.	
Recommendations are bas	ed upon da	ata size, data distribution, and skewness.	
These recommendations are based upon the resu	Its of the sir	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real W	orld data se	ets; for additional insight the user may want to consult a statisticia	an.

	UCL Statist	ics for Unc	ensored Full Data Sets						
	Ι								
User Selected Options		24 DM							
Date/Time of Computation	ProUCL 5.14/1/2024 9:16:	roUCL 5.14/1/2024 9:16:24 PM							
From File									
	OFF OFS								
Number of Pootstrap Operations	95%								
Number of Bootstrap Operations	2000								
antimony									
		General	Statistics						
Total	Number of Observations	10	Number of Distinct Observations	9					
			Number of Missing Observations	1					
	Minimum	1.4	Mean	5.7					
	Maximum	24	Median	3.05					
	SD	6.865	Std. Error of Mean	2.171					
	Coefficient of Variation	1.204	Skewness	2.563					
	ł								
		Normal C	GOF Test						
S	hapiro Wilk Test Statistic	0.618	Shapiro Wilk GOF Test						
5% S	hapiro Wilk Critical Value	0.842	Data Not Normal at 5% Significance Level						
	Lilliefors Test Statistic	0.369	Lilliefors GOF Test						
5	% Lilliefors Critical Value	0.262	Data Not Normal at 5% Significance Level						
	Data Not I	Normal at 5	% Significance Level						
	-								
050/11	Ass	uming Norr	nal Distribution						
95% NG		0 (70	95% UCLs (Adjusted for Skewness)	44.45					
95% Student's-t UCL			95% Adjusted-CLT UCL (Chen-1995)	11.15					
			95% Modified-t UCL (Johnson-1978)	9.973					
		Commo	COE Toot						
	A-D Test Statistic	0.966	Anderson-Darling Gamma GOE Test						
	5% A-D Critical Value	0.700	Data Not Gamma Distributed at 5% Significance Leve	1					
	K-S Test Statistic	0.293	Kolmogorov-Smirnov Gamma GOE Test						
	5% K-S Critical Value	0.272	Data Not Gamma Distributed at 5% Significance Leve						
	Data Not Gamm	a Distribute	ed at 5% Significance Level						
		Gamma	Statistics						
	k hat (MLE)	1.412	k star (bias corrected MLE)	1.055					
	Theta hat (MLE)	4.036	Theta star (bias corrected MLE)	5.402					
	nu hat (MLE)	28.24	nu star (bias corrected)	21.1					
MI	LE Mean (bias corrected)	5.7	MLE Sd (bias corrected)	5.549					
			Approximate Chi Square Value (0.05)	11.67					
Adjus	sted Level of Significance	0.0267	Adjusted Chi Square Value	10.47					
	Assu	uming Gam	ma Distribution						
95% Approximate Gamma	UCL (use when n>=50))	10.31	95% Adjusted Gamma UCL (use when n<50)	11.49					

Hinton,	wv
---------	----

	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.881	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.225	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data appear	Lognorma	I at 5% Significance Level	
	Lognorm	al Statistics	
Minimum of Logged Data	0.336	Mean of logged Data	1.346
Maximum of Logged Data	3.178	SD of logged Data	0.833
		I	
Assu	iming Logn	ormal Distribution	
95% H-UCL	11.73	90% Chebyshev (MVUE) UCL	9.483
95% Chebyshev (MVUE) UCL	11.42	97.5% Chebyshev (MVUE) UCL	14.11
99% Chebyshev (MVUE) UCL	19.39		
·			
Nonparame	tric Distrib	ution Free UCL Statistics	
Data appear to follow a l	Discernible	Distribution at 5% Significance Level	
Nonpar	ametric Dis	stribution Free UCLs	
95% CLT UCL	9.271	95% Jackknife UCL	9.679
95% Standard Bootstrap UCL	9.132	95% Bootstrap-t UCL	27.7
95% Hall's Bootstrap UCL	28.22	95% Percentile Bootstrap UCL	9.47
95% BCA Bootstrap UCL	11.18		
90% Chebyshev(Mean, Sd) UCL	12.21	95% Chebyshev(Mean, Sd) UCL	15.16
97.5% Chebyshev(Mean, Sd) UCL	19.26	99% Chebyshev(Mean, Sd) UCL	27.3
	Suggested	I UCL to Use	
95% H-UCL	11.73		
Note: Suggestions regarding the selection of a 95%	UCL are p	rovided to help the user to select the most appropriate 95% UCL.	
Recommendations are bas	ed upon da	ata size, data distribution, and skewness.	
These recommendations are based upon the resul	Its of the sir	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real W	orld data se	ets; for additional insight the user may want to consult a statisticiar	า.
ProUCL computes and output	ts H-statist	tic based UCLs for historical reasons only.	
H-statistic often results in unstable (both high a	nd low) val	ues of UCL95 as shown in examples in the Technical Guide.	
It is therefore recommende	ed to avoid	the use of H-statistic based 95% UCLs.	
Use of nonparametric methods are preferred to com	pute UCL9	5 for skewed data sets which do not follow a gamma distribution	n.

Appendix D - Constituent Volatilization Transfer Factor Calculations

Appendix D – Constituent Volatilization Transfer Factor Calculations

Former Hinton Ice House

508 Commercial Avenue Hinton, Summers County, West Virginia VRP Project #21037

Disclaimer

The information presented in this document was compiled and interpreted exclusively for the purposes stated in this document. Worley Consulting (Worley) provided this report for Greenbrier Environmental Group, Inc. solely for the purpose noted above.

Worley has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this report, but makes no guarantees or warranties as to the accuracy or completeness of this information. The information contained in this report is based upon, and limited by, the circumstances and conditions acknowledged herein, and upon information available at the time of its preparation. The information provided by others is believed to be accurate but cannot be guaranteed.

Worley does not accept any responsibility for the use of this report for any purpose other than that stated in this document and does not accept responsibility to any third party for the use in whole or in part of the contents of this report. Any alternative use, including that by a third party, or any reliance on, or decisions based on this document, is the responsibility of the alternative user or third party.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Worley.

Any questions concerning the information or its interpretation should be directed to L. Poppelreiter or T. Todoruk.

Table of Contents

1.	Intr	oduction3
2.	Estii	mating Ambient Air Concentrations from Volatile Emissions from Soil 4
	2.1	USEPA Model 4
3.	Refe	erences

List of Tables

Table 1 - Calculation of Soil Volatilization Transfer Factors for an On-Site Recreational

1. Introduction

This attachment presents the mathematical models used in the quantitative risk assessment to estimate the concentrations of constituents in ambient air due to volatilization from soil for the on-Site recreational user.

A soil volatilization model referenced in the United States Environmental Protection Agency (USEPA) Soil Screening Guidance (USEPA 1996) and the Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA 2002) was used to estimate concentrations of constituents in ambient air due to the volatilization from soil. This model may be used for intrusive activities or for non-intrusive activities for Site receptors.

2. Estimating Ambient Air Concentrations from Volatile Emissions from Soil

2.1 USEPA Model

Ambient concentrations of constituents of concern in air resulting from volatile emissions from soil may be estimated as follows:

$$CA_a = C_{src} * TF_{a-\nu}$$

where:

CAa	=	concentration of constituent in air (μ g/m ³)
TF _{a-vol}	=	transport factor that translates a soil concentration to an air concentration via volatile emissions (kg/m ³)
C _{src}	=	initial concentration of constituent in soil (µg/kg)

The soil saturation limit (C_{sat}) is the constituent concentration at which soil pore air and pore water space are saturated with the constituent and the adsorptive limits of the soil particles have been reached. Above this concentration, the constituent may be present in free phase. When soil concentrations are above C_{sat} , the volatilization model is no longer applicable because the model utilizes Henry's Law, which does not apply when constituents are in free phase. Thus, C_{sat} represents an upper bound on the applicability of the volatilization model. If the initial constituent soil concentration (C_{src}) is greater than the C_{sat} , then C_{sat} is utilized as the soil source concentration. If C_{src} is less than C_{sat} , then C_{src} is utilized as the soil source concentration.

*C*_{sat} can be estimated by the following equation:

$$C_{sat} = \frac{S}{\rho_b} \left(K_d * \rho_b + n_w + H' * n_a \right)$$

where:

- C_{sat} = soil saturation limit (mg/kg)
- S = solubility in water (mg/L)
- ρ_b = dry soil bulk density (kg/L or g/cm³)
- K_d = soil-water partition coefficient (cm³/g or L/kg)
- n_w = water-filled soil porosity (cm³-water/cm³-total or L-water/L-total)
- H' = dimensionless Henry's Law constant (if calculated from H, equal to 41*H)
- H = Henry's Law Constant (atm-m³/mol)

$$n_a$$
 = air-filled porosity (cm³-air/cm³-total or L-air/L-total)

Note that if the units g/cm^3 and cm^3/g are used for the variables above, the C_{sat} must be multiplied by the conversion factors 1 L/1000 cm³ and 1000 g/1 kg. According to the USEPA Regional Screening Level User's Guide (USEPA 2024), C_{sat} is not calculated for chemicals that are solid at ambient soil temperatures. USEPA developed the following decision criterion: if the melting point of a chemical is less than 20°C, the chemical is a liquid; if the melting point is above 20°C, the chemical is a solid. This criterion was used to decide whether to limit C_{src} by C_{sat} .

The transport factor (TF_{vol}) describes the relationship between the concentration in air to the concentration in soil and is given by the following expression:

$$TF_{a-vol} = DF * VF_{on}$$

where:

- TF_{a-vol} = transport factor that translates a soil concentration to an air concentration via volatile emissions (kg/m³)
- DF = dilution factor which translates on-Site air concentrations to off-Site air concentrations (dimensionless) (DF equals 1 if on-Site concentrations are required)

$$VF_{on}$$
 = volatilization factor for on-Site air concentrations (kg/m³)

The value for *DF* can be determined from on-Site measurements or from use of an air dispersion model. In this risk assessment, the *DF* was conservatively assumed to be 1 for Site receptors.

The volatilization factor describes the relationship between concentrations in air to concentrations in soil and is based on a volatilization model provided in the Soil Screening Guidance (USEPA 1996). The volatilization factor is given by the following equation:

$$VF_{on} = \left(\frac{1}{Q/C}\right) * (FF)$$

where:

 VF_{on} = volatilization factor for on-Site air concentrations (kg/m³)

Q/C = inverse dispersion factor [(g/m²-sec)/(kg/m³)]

FF = flux factor (g/m^2-sec)

The flux factor (*FF*), when multiplied by the soil concentration, gives the average flux of chemical out of the soil surface over a specified period of time. This flux is translated into an on-Site air concentration by use of a dispersion factor [1/(Q/C)], which represents the median air concentration for volatiles at the center of a square area based on analysis presented in the Soil Screening Guidance (USEPA 1996). It should be noted that the volatilization factor (*VF*_{on}) defined by the Soil Screening Guidance (USEPA 1996) equals $1/VF_{on}$; the equations presented in this attachment were re-arranged to solve for *VF*_{on}.

The following equation, derived from the Soil Screening Guidance (USEPA 1996), is used to calculate the average flux factor assuming volatilization is not limited by the available mass of a constituent in soil:

$$FF_{a} = \frac{2 * \rho_{b} * D_{A} * CF}{(\pi * D_{A} * T)^{0.5}}$$

where:

 FF_a = average flux factor (g/m²-sec)

 ρ_b = dry bulk density (g/cm³)

 D_A = apparent diffusivity (cm²/sec)

- CF = conversion factor $(1.0 \times 10^4 \text{ cm}^2/\text{m}^2)$
- T = exposure period (sec)

The following equation is used to calculate the maximum flux factor assuming volatilization is limited by the mass of a constituent in soil:

$$FF_m = \frac{\rho_b * d * CF}{T}$$

where:

 $FF_{m} = maximum flux factor (g/m²-sec)$ d = thickness of affected soil (m) CF = conversion factor (1.0x10⁶ cm³/m³) $\rho_{b} = dry bulk density (g/cm³)$ T = exposure period (sec)

In this evaluation, the flux factor (*FF*) is set to the minimum of the average flux factor (*FF*_a) and the maximum flux factor (*FF*_m).

The apparent diffusivity (D_A) is given by the following equation:

$$D_A = \frac{\left(n_a^{\frac{10}{3}} * D_v * H' + n_w^{\frac{10}{3}} * D_w\right)/n^2}{\rho_b * K_d + n_w + n_a * H'}$$

where:

 D_A = apparent diffusivity (cm²/sec)

 $n_a = air filled porosity (cm³-air/cm³-total)$

 n_w = water filled soil porosity (cm³-water/cm³-total)

- n = total soil porosity (cm³-pore/cm³-total) [equal to $1-(\rho_b/\rho_s)$]
- ρ_b = dry bulk density (g/cm³)
- H' = dimensionless Henry's Law constant (if calculated from H, equal to 41*H)
- H = Henry's Law constant (atm- m^3 /mol)
- D_v = diffusivity in air (cm²/sec)
- D_w = diffusivity in water (cm²/sec)
- K_d = soil water partition coefficient (cm³/g) (equal to $f_{oc}*K_{oc}$)
- foc = fraction of organic carbon in soil (g-oc/g-soil)
- K_{oc} = organic carbon to water partition coefficient (cm³/g)

The inverse dispersion factor (Q/C) for exposure to volatile emissions from soil was calculated using the following equation (USEPA 2002):

$$Q/C = A * \exp[\frac{(\ln(A_c) - B)^2}{C}]$$

where:

- Q/C = inverse dispersion factor (g/m²-s per kg/m³)
- A = constant [11.6831 for a resident, applied to a recreational user (default from Equation E-30 of USEPA 2002)]
- B = constant [23.4910 for a resident, applied to a recreational user (default from Equation E-30 of USEPA 2002)]
- C = constant [287.9969 for a resident, applied to a recreational user (default from Equation E-30 of USEPA 2002)]
- A_c = areal extent of contamination (acres)

The results of running the model for the on-Site recreational user are presented in Table 1. Individual constants used in the equations for each receptor are also presented and referenced in Table 1.

3. References

- USEPA 1996. Soil Screening Guidance: User's Guide. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, EPA/540/R-96/018, OSWER 9355.4-23, April 1996.
- USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002.
- USEPA 2024. Regional Screening Levels (RSLs) User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide. May 2024.

Tables

Table 1 Calculation of Soil Volatilization Transfer Factors for an On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

System Parameters

Variable Name	Value Units	Description
DF	1 unitless	dilution factor
Q/C control	1	0 indicates input value; 1 indicates calculate from area using SSG formula
Q/C (if Q/C control = 0)	(g/m ² -sec) / (kg/m ³)	
A _{site}	0.437 acres	areal extent of contaminated area at the site, assumed whole site is contaminated based on measured soil exceedances.
А	11.6831 not specified	constant; default for resident (USEPA 2002, Equation E-30)
В	23.491 not specified	constant; default for resident (USEPA 2002, Equation E-30)
С	287.9969 not specified	constant; default for resident (USEPA 2002, Equation E-30)
Q/C	91.1 (g/m ² -sec) / (kg/m ³)	
r _b	1.5 g/cm ³ or kg/L	dry bulk density; default value from SSG (USEPA 1996; p. 26)
r _s	2.65 g/cm ³	soil particle density; default value from SSG (USEPA 1996; p. 26)
d	0.61 m	unsaturated thickness of affected soil; 2 ft based on residential soil de minimis standard exceedances in surface soil (0-2 ft-bgs)
n	0.43 cm ³ -pore/cm ³ -total or L-pore/L-total	total soil porosity; equal to $1-(r_b/r_s)$
n _w	0.15 cm ³ -water/cm ³ -total or L-water/L-total	water filled soil porosity; default value from SSG (USEPA 1996; p. 26)
n _a	0.28 cm ³ -air/cm ³ -total or L-air/L-total	air filled soil porosity; equal to n-n _w
f _{oc}	0.006 g-oc/g-soil	fraction organic carbon in soil; default value from SSG (USEPA 1996; p. 26)
т	26 yr	exposure period; set equal to the exposure duration for the receptor
	8.20E+08 sec	
CF1	1.0E+04 cm ² /m ²	conversion factor
CF2	1.0E+06 cm ³ /m ³	conversion factor
CF3	41 mol/atm-m ³	conversion factor
Csat Decision Criterion	20 deg C	decision criterion for establishing soil saturation limit (Csat) (USEPA 2024; Section 5.12)
Volatilization Control	1 0 indicates no limits on volatilization	
	1 indicates volatile if Hen law const. ≥ lin	nit or if vapor pressure ≥ limit
	2 indicates volatile if boiling point < limit	OR if Hen law const. ≥ limit and molecular weight is < limit
Henry's law limit	1.0E-05 atm-m ³ /mol	
vapor pressure limit	1 mm Hg	
molecular weight limit	200 g/mol	
boiling point limit	200 deg C	

Notes: USEPA soil volatilization model (USEPA 2002)

References:

USEPA 1996. Soil Screening Guidance: User's Guide. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, EPA/540/R-96/018, OSWER 9355.4-23, April 1996.

USEPA 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, OSWER 9355.4-24, December 2002.

USEPA 2024. Regional Screening Table User's Guide. U.S. Environmental Protection Agency. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide, May 2024.

Table 1 Calculation of Soil Volatilization Transfer Factors for an On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Chemical-Specific Variables

	Chemical Properties									
	Vapor Pressure VP	Molecular Weight MW _i	Melting Point MP	Boiling Point BP	Solubility S	Organic Carbon Part. Coef. Koc	Henry's Law Constant H	Dim. Henry's Law Constant H'	Vapor Phase Diffusivity D _v	Water Phase Diffusivity D _w
Chemical	(mm Hg)	(g/mol)	(°C)	(°C)	(mg/L)	(mg/kg / mg/L)	(atm-m³/mol)	(unitless)	(cm²/s)	(cm²/s)
Polycyclic Aromatic Hydrocarbons (PAHs)										
Benzo(a)anthracene	2.1E-07	2.3E+02	8.4E+01	4.4E+02	9.4E-03	1.8E+05	1.2E-05	4.9E-04	2.6E-02	6.7E-06
Benzo(a)pyrene	5.5E-09	2.5E+02	1.8E+02	5.0E+02	1.6E-03	5.9E+05	4.6E-07	1.9E-05	2.5E-02	6.6E-06
Benzo(b)fluoranthene	5.0E-07	2.5E+02	1.7E+02	4.4E+02	1.5E-03	6.0E+05	6.6E-07	2.7E-05	2.5E-02	6.4E-06
Benzo(k)fluoranthene	9.7E-10	2.5E+02	2.2E+02	4.8E+02	8.0E-04	5.9E+05	5.8E-07	2.4E-05	2.5E-02	6.4E-06
Dibenzo(a,h)anthracene	9.6E-10	2.8E+02	2.7E+02	5.2E+02	2.5E-03	1.9E+06	1.4E-07	5.8E-06	2.4E-02	6.0E-06
Indeno(1,2,3-cd)pyrene	1.3E-10	2.8E+02	1.6E+02	5.4E+02	1.9E-04	2.0E+06	3.5E-07	1.4E-05	2.5E-02	6.4E-06
Metals										
Antimony	NA	1.2E+02	6.3E+02	1.6E+03	NA	NA	NA	NA	NA	NA
Arsenic	NA	7.5E+01	2.7E+02	6.2E+02	NA	NA	NA	NA	NA	NA
Iron	NA	5.6E+01	1.5E+03	3.0E+03	NA	NA	NA	NA	NA	NA
Polychlorinated Biphenyls (PCBs)										
Aroclor-1254	7.7E-05	3.3E+02	1.3E+02	3.8E+02	4.3E-02	1.3E+05	2.8E-04	1.2E-02	2.4E-02	6.1E-06
Notes:										

Notes.

NA - not available

Table 1 Calculation of Soil Volatilization Transfer Factors for an On-Site Recreational User Human Health and Ecological Risk Assessment Former Hinton Ice House Hinton, West Virginia

Chemical-Specific Variables

	Calculated Parameters								
Chemical	Soil-Water Part. Coeff. K _d (cm ³ /g) or (L/kg)	Apparent Diffusivity D _A (cm ² /sec)	Average Flux Factor FFa	Maximum Flux Factor FFm (g/m ² -sec)	Volatilization Factor VFon (kg/m ³)	Volatilization Control ^[1]	Transport Factor TFvol (kg/m ³)	Calculated Soil Sat. Limit Csat (mg/kg)	Use Soil Csat Limit? Yes / No Csat Decision Criterion ^[2]
Polycyclic Aromatic Hydrocarbons (PAHs)	(cm / 5/ cr (1/ 1/5/	(en / see/	(8/11 300)	(6/11 300)	(16/111/	(unitiess)	(15/11)	(116/16/	
Benzo(a)anthracene	1.1E+03	6.8E-10	1.5E-05	1.1E-03	1.7E-07	1	1.7E-07	1.0E+01	No
Benzo(a)pyrene	3.5E+03	1.9E-11	2.6E-06	1.1E-03	2.8E-08	0		5.7E+00	No
Benzo(b)fluoranthene	3.6E+03	2.1E-11	2.7E-06	1.1E-03	3.0E-08	0		5.4E+00	No
Benzo(k)fluoranthene	3.5E+03	2.1E-11	2.7E-06	1.1E-03	2.9E-08	0		2.8E+00	No
Dibenzo(a,h)anthracene	1.1E+04	4.0E-12	1.2E-06	1.1E-03	1.3E-08	0		2.9E+01	No
Indeno(1,2,3-cd)pyrene	1.2E+04	5.1E-12	1.3E-06	1.1E-03	1.5E-08	0		2.2E+00	No
Metals									
Antimony	NA	NA	NA	1.1E-03	0.0E+00	0		NA	No
Arsenic	NA	NA	NA	1.1E-03	0.0E+00	0		NA	No
Iron	NA	NA	NA	1.1E-03	0.0E+00	0		NA	No
Polychlorinated Biphenyls (PCBs)									
Aroclor-1254	7.8E+02	1.9E-08	8.1E-05	1.1E-03	8.9E-07	1	8.9E-07	3.4E+01	No
Notes:									

[1] For the volatilization control column: "1" means the constituent is a volatile and a "0" means the constituent is not a volatile based on the selected definition of a volatile on page 1 of this table. [2] Calculated C_{sat} is utilized to compare the soil source concentration (i.e. C_{src}).

Heather Gretka, M.Sc., R.P.Bio., P.Biol.

Senior Toxicologist

Summary

Heather Gretka is a risk assessor with 12 years of experience in environmental consulting. Her practice focuses on risk assessment, risk management, remedial options and sustainability decisions in the context of human, terrestrial and aquatic receptor health. She is practiced in the analysis and interpretation of surface water, sediment, soil, and toxicological data. Heather has completed screening, intermediate, and detailed level HHERAs under federal and provincial regulatory frameworks using various lines of evidence such as toxicity tests, bioaccumulation factors, food chain modeling, and biological assessments. Heather is proficient at using R and ProUCL statistical software.

Education

2018	Pg. Dip, Environmental Toxicology and Pollution Monitoring, Ulster University
201E	M. S. Luniversity of Vistoria

- 2015 M.Sc., University of Victoria
- 2008 B.Sc., University of Western Ontario

Relevant Experience

2022

Risk Assessor, Liquid Sulphur Pipeline Release Report, Pieridae Energy

In support of meeting the AER's release reporting requirements, prepared a report to address a release from a steamline encapsulating a liquid sulphur pipeline (LSPL). A weight-of-evidence risk assessment approach was taken to address potential impacts to the local environment, which involved analysis of surface water and soil chemistry data, soil leachability testing, multi-concentration acute lethality testing of the source solution, and a fish habitat assessment.

2022 Risk Assessor, Hart Road DDT HHERA, PSPC

Completed a weight-of-evidence HHERA addressing dichloro-diphenyl-trichloroethane (DDT) and its metabolites in site soil due to historical agricultural uses on behalf of Public Services and Procurement Canada (PSPC). The HHERA was prepared in accordance with FCSAP and CCME guidance documents and involved integrating newly collected data with previously established datasets for soil, invertebrate tissue, and plant tissue chemistry data and evaluating whether unacceptable risks to human and ecological receptors were to be expected at the site following a proposed remedial excavation of several hot spot areas.

2021 Risk Assessor, Nanaimo Rifle Range HHERA, PSPC

Prepared an HHERA for PSPC on behalf of the Department of National Defense to support planned site upgrades and the reuse of soil at the Nanaimo Rifle Range. Munitions-related contamination (e.g., copper, lead, and nickel) was identified in on-site soil, sediment, and surface water and evaluated to determine potential risks caused to human and ecological receptors. Food web modeling was completed for birds and mammals.

Memberships and affiliations

- Registered Professional Biologist (R.P.Bio) with the College of Applied Biologists, Current
- Science Advisory Board for Contaminated Sites (SABCS) in BC, Current
- Alberta Society of Professional Biologists, Current

Work History

2022-Present	Advisian, Senior Risk Assessor
2020-Present	SLR, Risk Assessor
2014-2020	AECOM, Environmental Scientist

Lisa Poppelreiter

Associate Technical Consultant, Environmental Scientist, Risk Assessor

Lisa has over 13 years of environmental consulting experience. Areas of expertise include human health and ecological risk assessments (including third-party reviews of risk assessments), derivation of clean-up numbers, conceptual site model development, vapor intrusion assessments, and statistical evaluations of analytical data. She has focused on the technical requirements under Pennsylvania's Land Recycling and Environmental Remediation Standards Act (Act 2) and the West Virginia Voluntary Remediation and Redevelopment Act (VRRA) program, as well as clean-up programs in Ohio, Massachusetts, and Louisiana. Lisa has taken the lead as project manager on a voluminous number of risk assessment projects and has experience training entry level employees on the risk assessment process. She has assisted in the development of site investigation reports, baseline and residual risk assessments, clean-up/remedial action plans, and final reports.

Areas of Expertise

- Human Health and Ecological Risk
 Assessments
- Derivation of Cleanup Numbers
- Conceptual Site Model Development

- Vapor Intrusion Assessment
- Statistical Evaluation of Analytical Data / Data Management

Education

2009

B.S. Environmental Science, California University of Pennsylvania

Relevant Experience

Risk Assessment Third-Party Reviews

Lisa has also completed third-party reviews of human health and ecological risk assessment reports under West Virginia's voluntary remediation program. She is exceptionally knowledgeable about the West Virginia VRRA rules and regulations and has commented on a multitude of site assessment reports and risk assessment reports to provide constructive feedback on properly following the VRP guidance. Lisa has worked closely with WVDEP project managers in regards to writing and resolving technical comments. She has also participated in various site visits in support of completing site characterization activities that fulfill the WVDEP requirements to prepare a human health and ecological risk assessment.

WVDEP LUST/LAST Program

Lisa has assisted with the re-development of WVDEP's Leaking Underground Storage Tank (LUST) and Leaking Aboveground Storage Tank (LAST) program in regards to development of soil screening standards. The purpose was to develop updated soil screening standards that will allow efficient screening of sites

through the LUST/LAST program, but still be health protective. The proposed soil screening standards were developed primarily based on risk-based methods that are protective of both direct contact and vapor intrusion exposure pathways. She had prepared a conceptual flow chart of steps that guides a remediator through the soil screening process and identified what limiting factors prevent the use of the proposed soil screening standards.

WVDEP Regulatory Screening Value Spreadsheets

Lisa has also assisted WVDEP with updating technical spreadsheets that were utilized to derive WVDEP regulatory screening values. The primary task was to correct errors in the Excel formulas and return and error-free, fully-functioning spreadsheet capable of deriving screening values for over 350 chemicals.

Petroleum UST/AST Sites

Lisa has worked as the lead risk assessor on numerous petroleum underground storage tank and above ground storage tank sites located in both Pennsylvania and West Virginia under their respective voluntary programs. These assessments focus the use of risk assessment on addressing environmental impacts in order to place these sites back into use. A solid conceptual site model is crucial in determining the areas of the site and types of receptors that could create the most significant risk. Most of the site conceptual models addressed nonresidential use; however, several of the sites needed to address future residential use and recreational use as part of the risk assessment.

Derivation of Cleanup Values

Lisa has developed property-specific cleanup values for a future recreational land use scenario (i.e., walking trail through a natural area) for a site in Ohio. The cleanup values were developed for several polycyclic aromatic hydrocarbons (PAHs) and metals, including lead, for surface soil. Exposure parameters related specifically to this recreational land were utilized to calculate the cleanup values. For lead, a time-weighted exposure approach was used in accordance with USEPA guidance to derive a cleanup value that is specific to a recreator rather than a resident. On a separate project in Pennsylvania (PA), Lisa has derived site-specific cleanup values for a different type of future recreational land use scenario (i.e., community park including playground, event lawn, pavilions, walking trails, and water access to adjacent river). The exposure parameters varied slightly from the Ohio site due to the presence of amenities on the property. Cleanup values for the PA site were derived for PAHs and arsenic in surface soil.

Vapor Intrusion Assessment

Lisa completed an assessment of vapor intrusion for a site in PA. An underground storm sewer system was suspected as acting as a preferential pathway for vapors from the site release of gasoline. It was determined that the product was not expected to migrate preferentially through the sewer system as the release occurred in product lines that were deeper than the shallower sewer lines. Based on a multiple line of evidence approach, it was determined that vapor sources in soil and groundwater were not in proximity distance to the sewer line system and as a result preferential migration of vapors through the sewer system was unlikely. Off-site indoor air and ambient air samples were also utilized to evaluate off-site residences. The analysis concluded that the few detections of volatile constituents in indoor air samples were likely attributed to other anthropogenic sources.

Surface Water Risk Assessment

Lisa has participated in a complex risk assessment for a site in which a catch basin served as a preferential pathway and discharged into a culvert, which then discharged into an adjacent stream. Assessment of a recreational user of the stream and the stream itself was strategically evaluated in two parts. One part was the direct discharge from the culvert and the other part was diffuse discharge of groundwater upstream of the culvert discharge point. A site-specific surface water concentration was back-calculated for the recreational user under several scenarios (varying dermal exposure) in order to determine an appropriate surface water concentration that would be below an acceptable risk benchmark.

Right-of-Way Segmentation and Target Hazard Quotient Analyses

Lisa has worked on many sites where she has developed a variety of strategic approaches for site closure utilizing unique aspect and tools of quantitative risk assessment. She has utilized site-specific data evaluation methods and procedures that reduced the need for further remediation. For example, Lisa has employed

various quantitative methods for deriving exposure point concentrations for the construction/utility worker scenarios in un-deeded right-of-ways, including segmentation of the utility corridors. This entailed apportioning the time these receptors would spend in each segment and relating each segment to a different exposure point concentration. In addition, she has performed target hazard quotient analyses on several projects to demonstrate whether or not the total hazard index for each target organ was above the regulatory benchmark.

Residual Risk Assessment

Lisa has assisted in a residual risk assessment for a former manufactured gas plant (MGP) site. A residual risk assessment was conducted in order to derive remedial goals that would reduce the overall hazard index and cancer risk to acceptable levels for each receptor at the site. This required each receptor and exposure pathway to be evaluated in order to determine which pathway(s) contributed the most risk and as a result was chosen as the basis of the remedial action goals that were calculated. These remedial goals were calculated to be protective of all receptors evaluated at the site.

Statistical Background Analyses

Lisa has performed statistical analyses on quarterly groundwater data under a National Pollutant Discharge Elimination System (NPDES) Permit. This analysis utilized the tolerance interval procedure to calculate tolerance limits based on the background well data and compared data from four compliance monitoring wells in order to determine if there is a statistically significant increase in concentration over the background well. On a separate project, Lisa has performed a statistical background analysis on vanadium in soil. The Mann-Wilcoxon Rank Sum Test and Quantile Test were used to perform the statistical analyses in order to demonstrate that vanadium soil concentrations within the release area are not statistically different from vanadium soil concentration from samples collected outside of the release area. Also, she has assisted with plume stability analyses utilizing statistical programs such as the Mann Kendall model spreadsheets.

Data Gap Analyses

Lisa has provided technical input in support of data gap analyses for several clients. The data gap analysis was completed to identify any additional sampling or investigative activities that needed to be completed in order to satisfy site characterization requirements. This included, for example, additional soil and groundwater sampling locations, additional rounds of groundwater sampling to meet the minimum number of samples required to complete a risk assessment, speciating analytical parameters to perform appropriate screening of applicable criteria, etc.

Fate & Transport Modeling

Lisa has utilized a number of various fate and transport models to estimate exposure point concentrations. These include the Johnson and Ettinger (J&E) model (to estimate indoor air concentrations), the Virginia Department of Environmental Quality (VA DEQ) trench model (to estimate trench air concentrations from groundwater), and groundwater transport models such as BIOSCREEN, Quick Domenico, and SWLOAD/Toxics Management Spreadsheet.

Trench Model Alternatives

Lisa has performed research on alternative methods for estimating trench air concentrations for a construction worker/utility worker scenario. This included site-specific modifications to existing trench air models (e.g., VADEQ model) based on USEPA Region 8 documents. Modifications to the trench dimensions and air exchange rate play a significant role in estimating trench air concentrations. This evaluation also included utilization of soil gas data and utilization of direct air measurements collected within a trench via Summa canisters. Alternative methods based on Andelman studies were also considered during this evaluation.

Massachusetts Risk Assessment

Lisa has prepared a Method 3 Risk Characterization Report following regulatory requirements and guidelines for the Massachusetts Contingency Plan. The Method 3 Risk Characterization Report assessed the conditions of a petroleum retail facility and potential exposures in order to determine that no significant risk of harm to human health, public welfare, safety, or environmental exist at the site.

Ohio Risk Assessment

Lisa has prepared a property-specific risk assessment report for a former dry cleaner facility under the Ohio VAP. The risk assessment originally evaluated the site under a commercial scenario when the former dry cleaner was a vacant space. However, the vacant former dry cleaner was then converted into a child day-care facility. The change in use of the property required a re-evaluation of the use of the facility (i.e., residential use) and a re-evaluation of potential receptors (e.g., children, parents, day care workers, etc.) that may be exposed to chlorinated vapors beneath the building.

Louisiana Cleanup Standard

Lisa has developed Louisiana cleanup standards (e.g., MO-2 remediation standards) following technical guidance from the Louisiana Department of Environmental Quality (LDEQ). The standards were developed under the LDEQ Risk Evaluation/Corrective Action Program (RECAP) guidance. Lisa utilized LDEQ's spreadsheets to derive the cleanup standards while updating various elements of the spreadsheets as needed to ensure the most recent methods and procedures for deriving risk-based cleanup standards were followed. This included updating toxicity values, modifying the method to utilize inhalation toxicity criteria in the applicable equations, and adding in constituents to the spreadsheets along with all applicable chemical property inputs that were not already included in the spreadsheets.

International Risk Assessment

Lisa has prepared a risk assessment for a petroleum refinery and chemical storage terminal located outside of the United States. Extensive research on local bye-laws and environmental protection acts was conducted to build the regulatory framework under which to prepare the risk assessment. Regulations from USEPA, Florida, Hawaii, and Puerto Rico were also considered. The risk assessment was completed to support the facility's long-term vision for remediation of historical releases of crude oil and petroleum products beneath the terminal.

International Outdoor Air Risk Evaluation

Lisa has conducted a risk evaluation for a chemical facility located outside of the United States which underwent thermal treatment remediation activities. Soil vapor samples were collected and screened against USEPA screening values to evaluate risks for exposure to chlorobenzene compounds for commercial/industrial workers at the facility via the inhalation of volatiles migrating from the subsurface to outdoor air. An outdoor air attenuation factor was applied to the USEPA air screening values to derive soil vapor screening values which could then be compared to the soil vapor analytical results.

Field Monitoring and Sampling

Lisa has also had experience in the field participating in perimeter air monitoring during an interim response action excavation and assisting in collecting wastewater disposal samples. She is familiar with the use of air monitoring equipment such as photoionization detector (PID) devices. She has also had experience in the field collecting samples as part of an on-going annual PCB (polychlorinated biphenyls) sampling program in which liquid samples were collected from accumulation in components from natural gas distribution pipeline systems across western Pennsylvania and tested for PCBs. Lisa has worked closely with analytical laboratories to have samples from various media analyzed, starting from development of the analytical scope of work to management of the final lab results.

COAs/Annual Plan Preparation

Lisa has also been responsible for developing and updating generic work plan documents for a multi-site consent order and agreement (COA) in the state of Pennsylvania. She also was responsible for several annual plans under various COAs that summarize activities completed from the ending year and projected activities for the following year. Points are accrued for each activity as a means of tracking financial spending on the sites under the COA, which is reported to PADEP each year. Lisa has attended annual meetings with entities under the COAs, including PADEP project managers. Lisa has also prepared monthly and quarterly cost models to track and updated projected cost-to-closure activities and spending.

Training Entry Level Employees

Lisa has experience training entry level employees on the risk assessment process, including following appropriate regulatory guidance procedures, understanding the screening process for selection of constituents of interest, evaluation of applicable receptors and exposure pathways, and calculating quantitative risks.

Environmental Covenants/Land Use Covenants

Lisa has experience preparing environmental covenants/land use covenants for dozens of properties based on the institutional and/or engineering controls required for the property. This includes researching the property's tax parcel information, preparing a description of contamination and remedy, and summarizing activity and use limitations. She has also assisted with preparing associated figures and tax parcel maps indicating the coordinates of the area of the property that pertain to the activity and use limitations and as well as indicating remaining sample locations in which constituent concentrations exceed regulatory screening criteria.

Presentations

- Poppelreiter, Lisa, 2024. COC or Not a COC: That Is The Question. Presented at the 2024 West Virginia Brownfields Conference. September 10, 2024.
- Poppelreiter, Lisa, 2023. Navigating the Roadblocks of Vapor Intrusion. Presented at the 2023 West Virginia Brownfields Conference. September 12, 2023.
- Shamory, Brett, L. Smith, 2015. Evaluation of Virginia DEQ Trench Model for Construction/Utility Worker Exposure Pathway Risk Assessment. Presented at the 2015 Pennsylvania Brownfields Conference. Co-authored by John J. Mahfood and Chad Hunter.
- Shaw, Bruce, L. Smith, and J. J. Mahfood, 2014. Risk Assessment to Support Multi-Phase Brownfields Redevelopment. Presented at the 2014 West Virginia Brownfields Conference. September 11 and 12, 2014.
- Urbassik, Mark, L. Smith, 2012. A Different Paradigm for Brownfield Assessments/Remediation. Presented at the 2012 Pennsylvania Brownfields Conference. Co-authored by John J. Mahfood.

Work History

2023-Present	Associate Technical Consultant/Environmental Scientist/Risk Assessor, Worley Consulting
2020-2023	Sr. Risk Assessment Specialist, Strategic Risk Services, LLC
2010-2020	Environmental Risk Assessor, The Mahfood Group, LLC

Department of Administration Purchasing Division 2019 Washington Street East Post Office Box 50130 Charleston, WV 25305-0130

State of West Virginia Centralized Request for Quote Service - Prof

Doc Description: Environmental Risk Assessor Proc Type: Central Master Agreement Date Issued Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP2500000004 1 Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP2500000004 1 Solicitation Closes Solicitation No Version Solicitation Closes Solicitation No Version Solicitation Closes Solicitation No Version Solicitation Closes Version Version	Proc Folder:	1468037		Reason for Modification:				
Proc Type: Central Master Agreement Date Issued Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP250000004 1 BID RECEIVING LOCATION BID RECEIVING LOCATION OUTRON STE OUTRON ST E OUTRON ST E CHARLESTON WV 25305 JS	Doc Description:	Environmental Risk Asse						
Proc Type: Central Master Agreement Date Issued Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP250000004 1 Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP250000004 1 Solicitation Closes BID RECEIVING LOCATION Solicitation No URCHASING DIVISION OURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS								
Date Issued Solicitation Closes Solicitation No Version 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP2500000004 1 BID RECEIVING LOCATION BID CLERK DEPARTMENT OF ADMINISTRATION PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS	Proc Type:	Central Master Agreemer	nt					
Interference Distribution Distribution 2024-09-04 2024-09-19 13:30 CRFQ 0313 DEP2500000004 1 BID RECEIVING LOCATION BID CLERK DEPARTMENT OF ADMINISTRATION PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS JS	Date Issued	Solicitation Closes	Solicitation No	Version				
BID RECEIVING LOCATION BID CLERK DEPARTMENT OF ADMINISTRATION PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS	2024-09-04	2024-09-19 13:30	CRFQ 0313 DEP2500000004	1				
BID CLERK DEPARTMENT OF ADMINISTRATION PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS	BID RECEIVING L	OCATION						
DEPARTMENT OF ADMINISTRATION PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS	BID CLERK							
PURCHASING DIVISION 2019 WASHINGTON ST E CHARLESTON WV 25305 JS	DEPARTMENT OF	- ADMINISTRATION						
2019 WASHINGTON ST E CHARLESTON WV 25305 JS	PURCHASING DI	/ISION						
CHARLESTON WV 25305 JS	2019 WASHINGTO	ON ST E						
US	CHARLESTON WV 25305							
	US							

VENDOR		
Vendor Customer Code: VS0000046054		
Vendor Name : Worley Group, Inc.		
Address :		
Street: 5995 Rogerdale Road		
City : Houston		
State : TX	Country : USA	Zip : 77072
Principal Contact : Lisa Poppelreiter		
Vendor Contact Phone: 412-377-5089	Extension:	
FOR INFORMATION CONTACT THE BUYER Joseph E Hager III (304) 558-2306 joseph.e.hageriii@wv.gov		
Vendor Signature X	FEIN# 94-2624994	DATE 19-Sept-2024
All affects and back to all terms and a smallet man		

All offers subject to all terms and conditions contained in this solicitation

ADDITIONAL INFORMATION

The West Virginia Purchasing Division is soliciting bids on behalf of West Virginia Department of Environmental Protection to establish an open-end contract for an Environmental Risk Assessor to determine ecological and human health risks that may be associated with projects managed by the WVDEP per the attached specifications and terms and conditions.

INVOICE TO			SHIP TO			
ENVIRONMENTAL PROTECTION		ENVIRONMENTAL PROTECTION				
OFFICE OF ENVIRONMENTAL REMEDIATION 601 57TH ST SE		601 57TH	ST			
CHARLESTON WV		CHARLESTON		WV		
US		US				
Line Comm Ln I	Desc	Qty	Unit Issue	Unit Price	Total Price	
1 Risk or haz	ard assessment	700.00000	HOUR	\$128/hr	\$89,600	
Comm Code	Manufacturer	Specificati	on	Model #		

77101501

Extended Description:

Environmental Risk Assessor Open end contract for service, bid sheet represents an estimated number of hours for bidding purposes to establish a contracted set price per hour.

SCHEDULE OF EVENTS

Event

<u>Line</u>

Event Date

INSTRUCTIONS TO VENDORS SUBMITTING BIDS

1. REVIEW DOCUMENTS THOROUGHLY: The attached documents contain a solicitation for bids. Please read these instructions and all documents attached in their entirety. These instructions provide critical information about requirements that if overlooked could lead to disqualification of a Vendor's bid. All bids must be submitted in accordance with the provisions contained in these instructions and the Solicitation. Failure to do so may result in disqualification of Vendor's bid.

2. MANDATORY TERMS: The Solicitation may contain mandatory provisions identified by the use of the words "must," "will," and "shall." Failure to comply with a mandatory term in the Solicitation will result in bid disqualification.

3. PREBID MEETING: The item identified below shall apply to this Solicitation.

[] A pre-bid meeting will not be held prior to bid opening

[] A MANDATORY PRE-BID meeting will be held at the following place and time:

All Vendors submitting a bid must attend the mandatory pre-bid meeting. Failure to attend the mandatory pre-bid meeting shall result in disqualification of the Vendor's bid. No one individual is permitted to represent more than one vendor at the pre-bid meeting. Any individual that does attempt to represent two or more vendors will be required to select one vendor to which the individual's attendance will be attributed. The vendors not selected will be deemed to have not attended the pre-bid meeting unless another individual attended on their behalf.

An attendance sheet provided at the pre-bid meeting shall serve as the official document verifying attendance. Any person attending the pre-bid meeting on behalf of a Vendor must list on the attendance sheet his or her name and the name of the Vendor he or she is representing.

Additionally, the person attending the pre-bid meeting should include the Vendor's E-Mail address, phone number, and Fax number on the attendance sheet. It is the Vendor's responsibility to locate the attendance sheet and provide the required information. Failure to complete the attendance sheet as required may result in disqualification of Vendor's bid.

All Vendors should arrive prior to the starting time for the pre-bid. Vendors who arrive after the starting time but prior to the end of the pre-bid will be permitted to sign in but are charged with knowing all matters discussed at the pre-bid.

Questions submitted at least five business days prior to a scheduled pre-bid will be discussed at the pre-bid meeting if possible. Any discussions or answers to questions at the pre-bid meeting are preliminary in nature and are non-binding. Official and binding answers to questions will be published in a written addendum to the Solicitation prior to bid opening.

4. VENDOR QUESTION DEADLINE: Vendors may submit questions relating to this Solicitation to the Purchasing Division. Questions must be submitted in writing. All questions must be submitted on or before the date listed below and to the address listed below to be considered. A written response will be published in a Solicitation addendum if a response is possible and appropriate. Non-written discussions, conversations, or questions and answers regarding this Solicitation are preliminary in nature and are nonbinding.

Submitted emails should have the solicitation number in the subject line.

Question Submission Deadline:

Submit Questions to: 2019 Washington Street, East Charleston, WV 25305 Fax: (304) 558-3970 Email:

5. VERBAL COMMUNICATION: Any verbal communication between the Vendor and any State personnel is not binding, including verbal communication at the mandatory pre-bid conference. Only information issued in writing and added to the Solicitation by an official written addendum by the Purchasing Division is binding.

6. BID SUBMISSION: All bids must be submitted on or before the date and time of the bid opening listed in section 7 below. Vendors can submit bids electronically through *wv*OASIS, in paper form delivered to the Purchasing Division at the address listed below either in person or by courier, or in facsimile form by faxing to the Purchasing Division at the number listed below. Notwithstanding the foregoing, the Purchasing Division may prohibit the submission of bids electronically through *wv*OASIS at its sole discretion. Such a prohibition will be contained and communicated in the *wv*OASIS system resulting in the Vendor's inability to submit bids through *wv*OASIS. The Purchasing Division will not accept bids, modification of bids, or addendum acknowledgment forms via email. Bids submitted in paper or facsimile form must contain a signature. Bids submitted in *wv*OASIS are deemed to be electronically signed.

Any bid received by the Purchasing Division staff is considered to be in the possession of the Purchasing Division and will not be returned for any reason.

For Request for Proposal ("RFP") Responses Only: Submission of a response to a Request for Proposal is not permitted in *wv*OASIS. In the event that Vendor is responding to a request for proposal, the Vendor shall submit one original technical and one original cost proposal prior to the bid opening date and time identified in Section 7 below, plus ______ convenience copies of each to the Purchasing Division at the address shown below. Additionally, the Vendor should clearly identify and segregate the cost proposal from the technical proposal in a separately sealed envelope.

Revised 8/24/2023

Bid Delivery Address and Fax Number:

Department of Administration, Purchasing Division 2019 Washington Street East Charleston, WV 25305-0130 Fax: 304-558-3970

A bid submitted in paper or facsimile form should contain the information listed below on the face of the submission envelope or fax cover sheet. Otherwise, the bid may be rejected by the Purchasing Division.

VENDOR NAME: BUYER: SOLICITATION NO.: BID OPENING DATE: BID OPENING TIME: FAX NUMBER:

7. BID OPENING: Bids submitted in response to this Solicitation will be opened at the location identified below on the date and time listed below. Delivery of a bid after the bid opening date and time will result in bid disqualification. For purposes of this Solicitation, a bid is considered delivered when confirmation of delivery is provided by *wv*OASIS (in the case of electronic submission) or when the bid is time stamped by the official Purchasing Division time clock (in the case of hand delivery).

Bid Opening Date and Time:

Bid Opening Location: Department of Administration, Purchasing Division 2019 Washington Street East Charleston, WV 25305-0130

8. ADDENDUM ACKNOWLEDGEMENT: Changes or revisions to this Solicitation will be made by an official written addendum issued by the Purchasing Division. Vendor should acknowledge receipt of all addenda issued with this Solicitation by completing an Addendum Acknowledgment Form, a copy of which is included herewith. Failure to acknowledge addenda may result in bid disqualification. The addendum acknowledgement should be submitted with the bid to expedite document processing.

9. BID FORMATTING: Vendor should type or electronically enter the information onto its bid to prevent errors in the evaluation. Failure to type or electronically enter the information may result in bid disqualification.

10. ALTERNATE MODEL OR BRAND: Unless the box below is checked, any model, brand, or specification listed in this Solicitation establishes the acceptable level of quality only and is not intended to reflect a preference for, or in any way favor, a particular brand or vendor. Vendors may bid alternates to a listed model or brand provided that the alternate is at least equal to the model or brand and complies with the required specifications. The equality of any alternate being bid shall be determined by the State at its sole discretion. Any Vendor bidding an alternate model or brand should clearly identify the alternate items in its bid and should include manufacturer's specifications, industry literature, and/or any other relevant documentation demonstrating the equality of the alternate items. Failure to provide information for alternate items may be grounds for rejection of a Vendor's bid.

[] This Solicitation is based upon a standardized commodity established under W. Va. Code § 5A-3-61. Vendors are expected to bid the standardized commodity identified. Failure to bid the standardized commodity will result in your firm's bid being rejected.

11. EXCEPTIONS AND CLARIFICATIONS: The Solicitation contains the specifications that shall form the basis of a contractual agreement. Vendor shall clearly mark any exceptions, clarifications, or other proposed modifications in its bid. Exceptions to, clarifications of, or modifications of a requirement or term and condition of the Solicitation may result in bid disqualification.

12. COMMUNICATION LIMITATIONS: In accordance with West Virginia Code of State Rules §148-1-6.6, communication with the State of West Virginia or any of its employees regarding this Solicitation during the solicitation, bid, evaluation or award periods, except through the Purchasing Division, is strictly prohibited without prior Purchasing Division approval. Purchasing Division approval for such communication is implied for all agency delegated and exempt purchases.

13. REGISTRATION: Prior to Contract award, the apparent successful Vendor must be properly registered with the West Virginia Purchasing Division and must have paid the \$125 fee, if applicable.

14. UNIT PRICE: Unit prices shall prevail in cases of a discrepancy in the Vendor's bid.

15. PREFERENCE: Vendor Preference may be requested in purchases of motor vehicles or construction and maintenance equipment and machinery used in highway and other infrastructure projects. Any request for preference must be submitted in writing with the bid, must specifically identify the preference requested with reference to the applicable subsection of West Virginia Code § 5A-3-37, and must include with the bid any information necessary to evaluate and confirm the applicability of the requested preference. A request form to help facilitate the request can be found at: www.state.wv.us/admin/purchase/vrc/Venpref.pdf.

15A. RECIPROCAL PREFERENCE: The State of West Virginia applies a reciprocal preference to all solicitations for commodities and printing in accordance with W. Va. Code § 5A-3-37(b). In effect, non-resident vendors receiving a preference in their home states, will see that same preference granted to West Virginia resident vendors bidding against them in West Virginia. Any request for reciprocal preference must include with the bid any information necessary to evaluate and confirm the applicability of the preference. A request form to help facilitate the request can be found at: www.state.wv.us/admin/purchase/vrc/Venpref.pdf.

16. SMALL, WOMEN-OWNED, OR MINORITY-OWNED BUSINESSES: For any

solicitations publicly advertised for bid, in accordance with West Virginia Code §5A-3-37 and W. Va. CSR § 148-22-9, any non-resident vendor certified as a small, women- owned, or minority-owned business under W. Va. CSR § 148-22-9 shall be provided the same preference made available to any resident vendor. Any non-resident small, women-owned, or minorityowned business must identify itself as such in writing, must submit that writing to the Purchasing Division with its bid, and must be properly certified under W. Va. CSR § 148-22-9 prior to contract award to receive the preferences made available to resident vendors. Preference for a non-resident small, women-owned, or minority owned business shall be applied in accordance with W. Va. CSR § 148-22-9.

17. WAIVER OF MINOR IRREGULARITIES: The Director reserves the right to waive minor irregularities in bids or specifications in accordance with West Virginia Code of State Rules § 148-1-4.6.

18. ELECTRONIC FILE ACCESS RESTRICTIONS: Vendor must ensure that its submission in *wv*OASIS can be accessed and viewed by the Purchasing Division staff immediately upon bid opening. The Purchasing Division will consider any file that cannot be immediately accessed and viewed at the time of the bid opening (such as, encrypted files, password protected files, or incompatible files) to be blank or incomplete as context requires and are therefore unacceptable. A vendor will not be permitted to unencrypt files, remove password protections, or resubmit documents after bid opening to make a file viewable if those documents are required with the bid. A Vendor may be required to provide document passwords or remove access restrictions to allow the Purchasing Division to print or electronically save documents provided that those documents are viewable by the Purchasing Division prior to obtaining the password or removing the access restriction.

19. NON-RESPONSIBLE: The Purchasing Division Director reserves the right to reject the bid of any vendor as Non-Responsible in accordance with W. Va. Code of State Rules § 148-1-5.3, when the Director determines that the vendor submitting the bid does not have the capability to fully perform or lacks the integrity and reliability to assure good-faith performance."

20. ACCEPTANCE/REJECTION: The State may accept or reject any bid in whole, or in part in accordance with W. Va. Code of State Rules § 148-1-4.5. and § 148-1-6.4.b."
21. YOUR SUBMISSION IS A PUBLIC DOCUMENT: Vendor's entire response to the Solicitation and the resulting Contract are public documents. As public documents, they will be disclosed to the public following the bid/proposal opening or award of the contract, as required by the competitive bidding laws of West Virginia Code §§ 5A-3-1 et seq., 5-22-1 et seq., and 5G-1-1 et seq. and the Freedom of Information Act West Virginia Code §§ 29B-1-1 et seq.

DO NOT SUBMIT MATERIAL YOU CONSIDER TO BE CONFIDENTIAL, A TRADE SECRET, OR OTHERWISE NOT SUBJECT TO PUBLIC DISCLOSURE.

Submission of any bid, proposal, or other document to the Purchasing Division constitutes your explicit consent to the subsequent public disclosure of the bid, proposal, or document. The Purchasing Division will disclose any document labeled "confidential," "proprietary," "trade secret," "private," or labeled with any other claim against public disclosure of the documents, to include any "trade secrets" as defined by West Virginia Code § 47-22-1 et seq. All submissions are subject to public disclosure without notice.

22. WITH THE BID REQUIREMENTS: In instances where these specifications require documentation or other information with the bid, and a vendor fails to provide it with the bid, the Director of the Purchasing Division reserves the right to request those items after bid opening and prior to contract award pursuant to the authority to waive minor irregularities in bids or specifications under W. Va. CSR § 148-1-4.6. This authority does not apply to instances where state law mandates receipt with the bid.

23. EMAIL NOTIFICATION OF AWARD: The Purchasing Division will attempt to provide bidders with e-mail notification of contract award when a solicitation that the bidder participated in has been awarded. For notification purposes, bidders must provide the Purchasing Division with a valid email address in the bid response. Bidders may also monitor *wv*OASIS or the Purchasing Division's website to determine when a contract has been awarded.

24. ISRAEL BOYCOTT CERTIFICATION: Vendor's act of submitting a bid in response to this solicitation shall be deemed a certification from bidder to the State that bidder is not currently engaged in, and will not for the duration of the contract, engage in a boycott of Israel. This certification is required by W. Va. Code § 5A-3-63.

GENERAL TERMS AND CONDITIONS:

1. CONTRACTUAL AGREEMENT: Issuance of an Award Document signed by the Purchasing Division Director, or his designee, and approved as to form by the Attorney General's office constitutes acceptance by the State of this Contract made by and between the State of West Virginia and the Vendor. Vendor's signature on its bid, or on the Contract if the Contract is not the result of a bid solicitation, signifies Vendor's agreement to be bound by and accept the terms and conditions contained in this Contract.

2. DEFINITIONS: As used in this Solicitation/Contract, the following terms shall have the meanings attributed to them below. Additional definitions may be found in the specifications included with this Solicitation/Contract.

2.1. "Agency" or "**Agencies**" means the agency, board, commission, or other entity of the State of West Virginia that is identified on the first page of the Solicitation or any other public entity seeking to procure goods or services under this Contract.

2.2. "Bid" or "Proposal" means the vendors submitted response to this solicitation.

2.3. "Contract" means the binding agreement that is entered into between the State and the Vendor to provide the goods or services requested in the Solicitation.

2.4. "Director" means the Director of the West Virginia Department of Administration, Purchasing Division.

2.5. "Purchasing Division" means the West Virginia Department of Administration, Purchasing Division.

2.6. "Award Document" means the document signed by the Agency and the Purchasing Division, and approved as to form by the Attorney General, that identifies the Vendor as the contract holder.

2.7. "Solicitation" means the official notice of an opportunity to supply the State with goods or services that is published by the Purchasing Division.

2.8. "State" means the State of West Virginia and/or any of its agencies, commissions, boards, etc. as context requires.

2.9. "Vendor" or "**Vendors**" means any entity submitting a bid in response to the Solicitation, the entity that has been selected as the lowest responsible bidder, or the entity that has been awarded the Contract as context requires.

3. CONTRACT TERM; RENEWAL; EXTENSION: The term of this Contract shall be determined in accordance with the category that has been identified as applicable to this Contract below:

[] Term Contract

Initial Contract Term: The Initial Contract Term will be for a period of _________. The Initial Contract Term becomes effective on the effective start date listed on the first page of this Contract, identified as the State of West Virginia contract cover page containing the signatures of the Purchasing Division, Attorney General, and Encumbrance clerk (or another page identified as _______), and the Initial Contract Term ends on the effective end date also shown on the first page of this Contract.

Renewal Term: This Contract may be renewed upon the mutual written consent of the Agency, and the Vendor, with approval of the Purchasing Division and the Attorney General's office (Attorney General approval is as to form only). Any request for renewal should be delivered to the Agency and then submitted to the Purchasing Division thirty (30) days prior to the expiration date of the initial contract term or appropriate renewal term. A Contract renewal shall be in accordance with the terms and conditions of the original contract. Unless otherwise specified below, renewal of this Contract is limited to _________ successive one (1) year periods or multiple renewal periods of less than one year, provided that the multiple renewal periods do not exceed the total number of months available in all renewal years combined. Automatic renewal of this Contract is prohibited. Renewals must be approved by the Vendor, Agency, Purchasing Division and Attorney General's office (Attorney General approval is as to form only)

[] Alternate Renewal Term – This contract may be renewed for _______ successive ______ year periods or shorter periods provided that they do not exceed the total number of months contained in all available renewals. Automatic renewal of this Contract is prohibited. Renewals must be approved by the Vendor, Agency, Purchasing Division and Attorney General's office (Attorney General approval is as to form only)

Delivery Order Limitations: In the event that this contract permits delivery orders, a delivery order may only be issued during the time this Contract is in effect. Any delivery order issued within one year of the expiration of this Contract shall be effective for one year from the date the delivery order is issued. No delivery order may be extended beyond one year after this Contract has expired.

[] Fixed Period Contract with Renewals: This Contract becomes effective upon Vendor's receipt of the notice to proceed and part of the Contract more fully described in the attached specifications must be completed within _____ days. Upon completion of the work covered by the preceding sentence, the vendor agrees that:

[] the contract will continue for _____ years;

[] the contract may be renewed for ______ successive ______ year periods or shorter periods provided that they do not exceed the total number of months contained in all available renewals. Automatic renewal of this Contract is prohibited. Renewals must be approved by the Vendor, Agency, Purchasing Division and Attorney General's Office (Attorney General approval is as to form only).

[] **One-Time Purchase:** The term of this Contract shall run from the issuance of the Award Document until all of the goods contracted for have been delivered, but in no event will this Contract extend for more than one fiscal year.

[] Construction/Project Oversight: This Contract becomes effective on the effective start date listed on the first page of this Contract, identified as the State of West Virginia contract cover page containing the signatures of the Purchasing Division, Attorney General, and Encumbrance clerk (or another page identified as _____ and continues until the project for which the vendor is providing oversight is complete.).

[] Other: Contract Term specified in _____

4. AUTHORITY TO PROCEED: Vendor is authorized to begin performance of this contract on the date of encumbrance listed on the front page of the Award Document unless either the box for "Fixed Period Contract" or "Fixed Period Contract with Renewals" has been checked in Section 3 above. If either "Fixed Period Contract" or "Fixed Period Contract with Renewals" has been checked. Vendor must not begin work until it receives a separate notice to proceed from the State. The notice to proceed will then be incorporated into the Contract via change order to memorialize the official date that work commenced.

5. QUANTITIES: The quantities required under this Contract shall be determined in accordance with the category that has been identified as applicable to this Contract below.

[] **Open End Contract:** Quantities listed in this Solicitation/Award Document are approximations only, based on estimates supplied by the Agency. It is understood and agreed that the Contract shall cover the quantities actually ordered for delivery during the term of the Contract, whether more or less than the quantities shown.

[] Service: The scope of the service to be provided will be more clearly defined in the specifications included herewith.

[] Combined Service and Goods: The scope of the service and deliverable goods to be provided will be more clearly defined in the specifications included herewith.

[] **One-Time Purchase:** This Contract is for the purchase of a set quantity of goods that are identified in the specifications included herewith. Once those items have been delivered, no additional goods may be procured under this Contract without an appropriate change order approved by the Vendor, Agency, Purchasing Division, and Attorney General's office.

[] **Construction:** This Contract is for construction activity more fully defined in the specifications.

6. EMERGENCY PURCHASES: The Purchasing Division Director may authorize the Agency to purchase goods or services in the open market that Vendor would otherwise provide under this Contract if those goods or services are for immediate or expedited delivery in an emergency. Emergencies shall include, but are not limited to, delays in transportation or an unanticipated increase in the volume of work. An emergency purchase in the open market, approved by the Purchasing Division Director, shall not constitute of breach of this Contract and shall not entitle the Vendor to any form of compensation or damages. This provision does not excuse the State from fulfilling its obligations under a One-Time Purchase contract.

7. REQUIRED DOCUMENTS: All of the items checked in this section must be provided to the Purchasing Division by the Vendor as specified:

[] **LICENSE(S) / CERTIFICATIONS / PERMITS:** In addition to anything required under the Section of the General Terms and Conditions entitled Licensing, the apparent successful Vendor shall furnish proof of the following licenses, certifications, and/or permits upon request and in a form acceptable to the State. The request may be prior to or after contract award at the State's sole discretion.

[]

[]

[]

[]

The apparent successful Vendor shall also furnish proof of any additional licenses or certifications contained in the specifications regardless of whether or not that requirement is listed above.

8. INSURANCE: The apparent successful Vendor shall furnish proof of the insurance identified by a checkmark below prior to Contract award. The insurance coverages identified below must be maintained throughout the life of this contract. Thirty (30) days prior to the expiration of the insurance policies, Vendor shall provide the Agency with proof that the insurance mandated herein has been continued. Vendor must also provide Agency with immediate notice of any changes in its insurance policies, including but not limited to, policy cancelation, policy reduction, or change in insurers. The apparent successful Vendor shall also furnish proof of any additional insurance requirements contained in the specifications prior to Contract award regardless of whether that insurance requirement is listed in this section.

Vendor must maintain:

[] **Commercial General Liability Insurance** in at least an amount of: _____ per occurrence.

[] Automobile Liability Insurance in at least an amount of: ______per occurrence.

[] **Professional/Malpractice/Errors and Omission Insurance** in at least an amount of: _______per occurrence. Notwithstanding the forgoing, Vendor's are not required to list the State as an additional insured for this type of policy.

[] Commercial Crime and Third Party Fidelity Insurance in an amount of:	
per occurrence.	

[] Cyber Liability Insurance in an amount of: ______ per occurrence.

[] Builders Risk Insurance in an amount equal to 100% of the amount of the Contract.

[] **Pollution Insurance** in an amount of: ______ per occurrence.

[] Aircraft Liability in an amount of: ______ per occurrence.

[]

[]

[]

[]

9. WORKERS' COMPENSATION INSURANCE: Vendor shall comply with laws relating to workers compensation, shall maintain workers' compensation insurance when required, and shall furnish proof of workers' compensation insurance upon request.

10. VENUE: All legal actions for damages brought by Vendor against the State shall be brought in the West Virginia Claims Commission. Other causes of action must be brought in the West Virginia court authorized by statute to exercise jurisdiction over it.

11. LIQUIDATED DAMAGES: This clause shall in no way be considered exclusive and shall not limit the State or Agency's right to pursue any other available remedy. Vendor shall pay liquidated damages in the amount specified below or as described in the specifications:

[]_____for_____.

[] Liquidated Damages Contained in the Specifications.

[] Liquidated Damages Are Not Included in this Contract.

12. ACCEPTANCE: Vendor's signature on its bid, or on the certification and signature page, constitutes an offer to the State that cannot be unilaterally withdrawn, signifies that the product or service proposed by vendor meets the mandatory requirements contained in the Solicitation for that product or service, unless otherwise indicated, and signifies acceptance of the terms and conditions contained in the Solicitation unless otherwise indicated.

13. PRICING: The pricing set forth herein is firm for the life of the Contract, unless specified elsewhere within this Solicitation/Contract by the State. A Vendor's inclusion of price adjustment provisions in its bid, without an express authorization from the State in the Solicitation to do so, may result in bid disqualification. Notwithstanding the foregoing, Vendor must extend any publicly advertised sale price to the State and invoice at the lower of the contract price or the publicly advertised sale price.

14. PAYMENT IN ARREARS: Payments for goods/services will be made in arrears only upon receipt of a proper invoice, detailing the goods/services provided or receipt of the goods/services, whichever is later. Notwithstanding the foregoing, payments for software maintenance, licenses, or subscriptions may be paid annually in advance.

15. PAYMENT METHODS: Vendor must accept payment by electronic funds transfer and P-Card. (The State of West Virginia's Purchasing Card program, administered under contract by a banking institution, processes payment for goods and services through state designated credit cards.)

16. TAXES: The Vendor shall pay any applicable sales, use, personal property or any other taxes arising out of this Contract and the transactions contemplated thereby. The State of West Virginia is exempt from federal and state taxes and will not pay or reimburse such taxes.

17. ADDITIONAL FEES: Vendor is not permitted to charge additional fees or assess additional charges that were not either expressly provided for in the solicitation published by the State of West Virginia, included in the Contract, or included in the unit price or lump sum bid amount that Vendor is required by the solicitation to provide. Including such fees or charges as notes to the solicitation may result in rejection of vendor's bid. Requesting such fees or charges be paid after the contract has been awarded may result in cancellation of the contract.

18. FUNDING: This Contract shall continue for the term stated herein, contingent upon funds being appropriated by the Legislature or otherwise being made available. In the event funds are not appropriated or otherwise made available, this Contract becomes void and of no effect beginning on July 1 of the fiscal year for which funding has not been appropriated or otherwise made available. If that occurs, the State may notify the Vendor that an alternative source of funding has been obtained and thereby avoid the automatic termination. Non-appropriation or non-funding shall not be considered an event of default.

19. CANCELLATION: The Purchasing Division Director reserves the right to cancel this Contract immediately upon written notice to the vendor if the materials or workmanship supplied do not conform to the specifications contained in the Contract. The Purchasing Division Director may also cancel any purchase or Contract upon 30 days written notice to the Vendor in accordance with West Virginia Code of State Rules § 148-1-5.2.b.

20. TIME: Time is of the essence regarding all matters of time and performance in this Contract.

21. APPLICABLE LAW: This Contract is governed by and interpreted under West Virginia law without giving effect to its choice of law principles. Any information provided in specification manuals, or any other source, verbal or written, which contradicts or violates the West Virginia Constitution, West Virginia Code, or West Virginia Code of State Rules is void and of no effect.

22. COMPLIANCE WITH LAWS: Vendor shall comply with all applicable federal, state, and local laws, regulations and ordinances. By submitting a bid, Vendor acknowledges that it has reviewed, understands, and will comply with all applicable laws, regulations, and ordinances.

SUBCONTRACTOR COMPLIANCE: Vendor shall notify all subcontractors providing commodities or services related to this Contract that as subcontractors, they too are required to comply with all applicable laws, regulations, and ordinances. Notification under this provision must occur prior to the performance of any work under the contract by the subcontractor.

23. ARBITRATION: Any references made to arbitration contained in this Contract, Vendor's bid, or in any American Institute of Architects documents pertaining to this Contract are hereby deleted, void, and of no effect.

24. MODIFICATIONS: This writing is the parties' final expression of intent. Notwithstanding anything contained in this Contract to the contrary no modification of this Contract shall be binding without mutual written consent of the Agency, and the Vendor, with approval of the Purchasing Division and the Attorney General's office (Attorney General approval is as to form only). Any change to existing contracts that adds work or changes contract cost, and were not included in the original contract, must be approved by the Purchasing Division and the Attorney General's Office (as to form) prior to the implementation of the change or commencement of work affected by the change.

25. WAIVER: The failure of either party to insist upon a strict performance of any of the terms or provision of this Contract, or to exercise any option, right, or remedy herein contained, shall not be construed as a waiver or a relinquishment for the future of such term, provision, option, right, or remedy, but the same shall continue in full force and effect. Any waiver must be expressly stated in writing and signed by the waiving party.

26. SUBSEQUENT FORMS: The terms and conditions contained in this Contract shall supersede any and all subsequent terms and conditions which may appear on any form documents submitted by Vendor to the Agency or Purchasing Division such as price lists, order forms, invoices, sales agreements, or maintenance agreements, and includes internet websites or other electronic documents. Acceptance or use of Vendor's forms does not constitute acceptance of the terms and conditions contained thereon.

27. ASSIGNMENT: Neither this Contract nor any monies due, or to become due hereunder, may be assigned by the Vendor without the express written consent of the Agency, the Purchasing Division, the Attorney General's office (as to form only), and any other government agency or office that may be required to approve such assignments.

28. WARRANTY: The Vendor expressly warrants that the goods and/or services covered by this Contract will: (a) conform to the specifications, drawings, samples, or other description furnished or specified by the Agency; (b) be merchantable and fit for the purpose intended; and (c) be free from defect in material and workmanship.

29. STATE EMPLOYEES: State employees are not permitted to utilize this Contract for personal use and the Vendor is prohibited from permitting or facilitating the same.

30. PRIVACY, SECURITY, AND CONFIDENTIALITY: The Vendor agrees that it will not disclose to anyone, directly or indirectly, any such personally identifiable information or other confidential information gained from the Agency, unless the individual who is the subject of the information consents to the disclosure in writing or the disclosure is made pursuant to the Agency's policies, procedures, and rules. Vendor further agrees to comply with the Confidentiality Policies and Information Security Accountability Requirements, set forth in www.state.wv.us/admin/purchase/privacy.

31. YOUR SUBMISSION IS A PUBLIC DOCUMENT: Vendor's entire response to the Solicitation and the resulting Contract are public documents. As public documents, they will be disclosed to the public following the bid/proposal opening or award of the contract, as required by the competitive bidding laws of West Virginia Code §§ 5A-3-1 et seq., 5-22-1 et seq., and 5G-1-1 et seq. and the Freedom of Information Act West Virginia Code §§ 29B-1-1 et seq.

DO NOT SUBMIT MATERIAL YOU CONSIDER TO BE CONFIDENTIAL, A TRADE SECRET, OR OTHERWISE NOT SUBJECT TO PUBLIC DISCLOSURE.

Submission of any bid, proposal, or other document to the Purchasing Division constitutes your explicit consent to the subsequent public disclosure of the bid, proposal, or document. The Purchasing Division will disclose any document labeled "confidential," "proprietary," "trade secret," "private," or labeled with any other claim against public disclosure of the documents, to include any "trade secrets" as defined by West Virginia Code § 47-22-1 et seq. All submissions are subject to public disclosure without notice.

32. LICENSING: In accordance with West Virginia Code of State Rules § 148-1-6.1.e, Vendor must be licensed and in good standing in accordance with any and all state and local laws and requirements by any state or local agency of West Virginia, including, but not limited to, the West Virginia Secretary of State's Office, the West Virginia Tax Department, West Virginia Insurance Commission, or any other state agency or political subdivision. Obligations related to political subdivisions may include, but are not limited to, business licensing, business and occupation taxes, inspection compliance, permitting, etc. Upon request, the Vendor must provide all necessary releases to obtain information to enable the Purchasing Division Director or the Agency to verify that the Vendor is licensed and in good standing with the above entities.

SUBCONTRACTOR COMPLIANCE: Vendor shall notify all subcontractors providing commodities or services related to this Contract that as subcontractors, they too are required to be licensed, in good standing, and up-to-date on all state and local obligations as described in this section. Obligations related to political subdivisions may include, but are not limited to, business licensing, business and occupation taxes, inspection compliance, permitting, etc. Notification under this provision must occur prior to the performance of any work under the contract by the subcontractor.

33. ANTITRUST: In submitting a bid to, signing a contract with, or accepting a Award Document from any agency of the State of West Virginia, the Vendor agrees to convey, sell, assign, or transfer to the State of West Virginia all rights, title, and interest in and to all causes of action it may now or hereafter acquire under the antitrust laws of the United States and the State of West Virginia for price fixing and/or unreasonable restraints of trade relating to the particular commodities or services purchased or acquired by the State of West Virginia. Such assignment shall be made and become effective at the time the purchasing agency tenders the initial payment to Vendor.

34. VENDOR NON-CONFLICT: Neither Vendor nor its representatives are permitted to have any interest, nor shall they acquire any interest, direct or indirect, which would compromise the performance of its services hereunder. Any such interests shall be promptly presented in detail to the Agency.

35. VENDOR RELATIONSHIP: The relationship of the Vendor to the State shall be that of an independent contractor and no principal-agent relationship or employer-employee relationship is contemplated or created by this Contract. The Vendor as an independent contractor is solely liable for the acts and omissions of its employees and agents. Vendor shall be responsible for selecting, supervising, and compensating any and all individuals employed pursuant to the terms of this Solicitation and resulting contract. Neither the Vendor, nor any employees or subcontractors of the Vendor, shall be deemed to be employees of the State for any purpose whatsoever. Vendor shall be exclusively responsible for payment of employees and contractors for all wages and salaries, taxes, withholding payments, penalties, fees, fringe benefits, professional liability insurance premiums, contributions to insurance and pension, or other deferred compensation plans, including but not limited to, Workers' Compensation and Social Security obligations, licensing fees, etc. and the filing of all necessary documents, forms, and returns pertinent to all of the foregoing.

Vendor shall hold harmless the State, and shall provide the State and Agency with a defense against any and all claims including, but not limited to, the foregoing payments, withholdings, contributions, taxes, Social Security taxes, and employer income tax returns.

36. INDEMNIFICATION: The Vendor agrees to indemnify, defend, and hold harmless the State and the Agency, their officers, and employees from and against: (1) Any claims or losses for services rendered by any subcontractor, person, or firm performing or supplying services, materials, or supplies in connection with the performance of the Contract; (2) Any claims or losses resulting to any person or entity injured or damaged by the Vendor, its officers, employees, or subcontractors by the publication, translation, reproduction, delivery, performance, use, or disposition of any data used under the Contract in a manner not authorized by the Contract, or by Federal or State statutes or regulations; and (3) Any failure of the Vendor, its officers, employees, or subcontractors to observe State and Federal laws including, but not limited to, labor and wage and hour laws.

37. NO DEBT CERTIFICATION: In accordance with West Virginia Code §§ 5A-3-10a and 5-22-1(i), the State is prohibited from awarding a contract to any bidder that owes a debt to the State or a political subdivision of the State. By submitting a bid, or entering into a contract with the State, Vendor is affirming that (1) for construction contracts, the Vendor is not in default on any monetary obligation owed to the state or a political subdivision of the state, and (2) for all other contracts, neither the Vendor nor any related party owe a debt as defined above, and neither the Vendor nor any related party are in employer default as defined in the statute cited above unless the debt or employer default is permitted under the statute.

38. CONFLICT OF INTEREST: Vendor, its officers or members or employees, shall not presently have or acquire an interest, direct or indirect, which would conflict with or compromise the performance of its obligations hereunder. Vendor shall periodically inquire of its officers, members and employees to ensure that a conflict of interest does not arise. Any conflict of interest discovered shall be promptly presented in detail to the Agency.

39. REPORTS: Vendor shall provide the Agency and/or the Purchasing Division with the following reports identified by a checked box below:

[] Such reports as the Agency and/or the Purchasing Division may request. Requested reports may include, but are not limited to, quantities purchased, agencies utilizing the contract, total contract expenditures by agency, etc.

[] Quarterly reports detailing the total quantity of purchases in units and dollars, along with a listing of purchases by agency. Quarterly reports should be delivered to the Purchasing Division via email at <u>purchasing.division@wv.gov.</u>

40. BACKGROUND CHECK: In accordance with W. Va. Code § 15-2D-3, the State reserves the right to prohibit a service provider's employees from accessing sensitive or critical information or to be present at the Capitol complex based upon results addressed from a criminal background check. Service providers should contact the West Virginia Division of Protective Services by phone at (304) 558-9911 for more information.

41. PREFERENCE FOR USE OF DOMESTIC STEEL PRODUCTS: Except when authorized by the Director of the Purchasing Division pursuant to W. Va. Code § 5A-3-56, no contractor may use or supply steel products for a State Contract Project other than those steel products made in the United States. A contractor who uses steel products in violation of this section may be subject to civil penalties pursuant to W. Va. Code § 5A-3-56. As used in this section:

- a. "State Contract Project" means any erection or construction of, or any addition to, alteration of or other improvement to any building or structure, including, but not limited to, roads or highways, or the installation of any heating or cooling or ventilating plants or other equipment, or the supply of and materials for such projects, pursuant to a contract with the State of West Virginia for which bids were solicited on or after June 6, 2001.
- b. "Steel Products" means products rolled, formed, shaped, drawn, extruded, forged, cast, fabricated or otherwise similarly processed, or processed by a combination of two or more or such operations, from steel made by the open heath, basic oxygen, electric furnace, Bessemer or other steel making process.
- c. The Purchasing Division Director may, in writing, authorize the use of foreign steel products if:
 - The cost for each contract item used does not exceed one tenth of one percent (.1%) of the total contract cost or two thousand five hundred dollars (\$2,500.00), whichever is greater. For the purposes of this section, the cost is the value of the steel product as delivered to the project; or
 - 2. The Director of the Purchasing Division determines that specified steel materials are not produced in the United States in sufficient quantity or otherwise are not reasonably available to meet contract requirements.

42. PREFERENCE FOR USE OF DOMESTIC ALUMINUM, GLASS, AND STEEL: In Accordance with W. Va. Code § 5-19-1 et seq., and W. Va. CSR § 148-10-1 et seq., for every contract or subcontract, subject to the limitations contained herein, for the construction, reconstruction, alteration, repair, improvement or maintenance of public works or for the purchase of any item of machinery or equipment to be used at sites of public works, only domestic aluminum, glass or steel products shall be supplied unless the spending officer determines, in writing, after the receipt of offers or bids, (1) that the cost of domestic aluminum, glass or steel products is unreasonable or inconsistent with the public interest of the State of West Virginia, (2) that domestic aluminum, glass or steel products are not produced in sufficient quantities to meet the contract requirements, or (3) the available domestic aluminum, glass, or steel do not meet the contract specifications. This provision only applies to public works contracts awarded in an amount more than fifty thousand dollars (\$50,000) or public works contracts that require more than ten thousand pounds of steel products.

The cost of domestic aluminum, glass, or steel products may be unreasonable if the cost is more than twenty percent (20%) of the bid or offered price for foreign made aluminum, glass, or steel products. If the domestic aluminum, glass or steel products to be supplied or produced in a "substantial labor surplus area", as defined by the United States Department of Labor, the cost of domestic aluminum, glass, or steel products may be unreasonable if the cost is more than thirty percent (30%) of the bid or offered price for foreign made aluminum, glass, or steel products. This preference shall be applied to an item of machinery or equipment, as indicated above, when the item is a single unit of equipment or machinery manufactured primarily of aluminum, glass or steel, is part of a public works contract and has the sole purpose or of being a permanent part of a single public works project. This provision does not apply to equipment or machinery purchased by a spending unit for use by that spending unit and not as part of a single public works project.

All bids and offers including domestic aluminum, glass or steel products that exceed bid or offer prices including foreign aluminum, glass or steel products after application of the preferences provided in this provision may be reduced to a price equal to or lower than the lowest bid or offer price for foreign aluminum, glass or steel products plus the applicable preference. If the reduced bid or offer prices are made in writing and supersede the prior bid or offer prices, all bids or offers, including the reduced bid or offer prices, will be reevaluated in accordance with this rule.

43. INTERESTED PARTY SUPPLEMENTAL DISCLOSURE: W. Va. Code § 6D-1-2 requires that for contracts with an actual or estimated value of at least \$1 million, the Vendor must submit to the Agency a disclosure of interested parties prior to beginning work under this Contract. Additionally, the Vendor must submit a supplemental disclosure of interested parties reflecting any new or differing interested parties to the contract, which were not included in the original pre-work interested party disclosure, within 30 days following the completion or termination of the contract. A copy of that form is included with this solicitation or can be obtained from the WV Ethics Commission. This requirement does not apply to publicly traded companies listed on a national or international stock exchange. A more detailed definition of interested parties can be obtained from the form referenced above.

44. PROHIBITION AGAINST USED OR REFURBISHED: Unless expressly permitted in the solicitation published by the State, Vendor must provide new, unused commodities, and is prohibited from supplying used or refurbished commodities, in fulfilling its responsibilities under this Contract.

45. VOID CONTRACT CLAUSES: This Contract is subject to the provisions of West Virginia Code § 5A-3-62, which automatically voids certain contract clauses that violate State law.

46. ISRAEL BOYCOTT: Bidder understands and agrees that, pursuant to W. Va. Code § 5A-3-63, it is prohibited from engaging in a boycott of Israel during the term of this contract.

DESIGNATED CONTACT: Vendor appoints the individual identified in this Section as the Contract Administrator and the initial point of contact for matters relating to this Contract.

(Printed Name and Title)
(Address)
(Phone Number) / (Fax Number)
(email address)

CERTIFICATION AND SIGNATURE: By signing below, or submitting documentation through wvOASIS, I certify that: I have reviewed this Solicitation/Contract in its entirety; that I understand the requirements, terms and conditions, and other information contained herein; that this bid, offer or proposal constitutes an offer to the State that cannot be unilaterally withdrawn; that the product or service proposed meets the mandatory requirements contained in the Solicitation/Contract for that product or service, unless otherwise stated herein; that the Vendor accepts the terms and conditions contained in the Solicitation, unless otherwise stated herein; that I am submitting this bid, offer or proposal for review and consideration; that this bid or offer was made without prior understanding, agreement, or connection with any entity submitting a bid or offer for the same material, supplies, equipment or services; that this bid or offer is in all respects fair and without collusion or fraud; that this Contract is accepted or entered into without any prior understanding, agreement, or connection to any other entity that could be considered a violation of law; that I am authorized by the Vendor to execute and submit this bid, offer, or proposal, or any documents related thereto on Vendor's behalf; that I am authorized to bind the vendor in a contractual relationship; and that to the best of my knowledge, the vendor has properly registered with any State agency that may require registration.

By signing below, I further certify that I understand this Contract is subject to the provisions of West Virginia Code § 5A-3-62, which automatically voids certain contract clauses that violate State law; and that pursuant to W. Va. Code 5A-3-63, the entity entering into this contract is prohibited from engaging in a boycott against Israel.

(Company)

(Signature of Authorized Representative)

(Printed Name and Title of Authorized Representative) (Date)

(Phone Number) (Fax Number)

(Email Address)

ADDENDUM ACKNOWLEDGEMENT FORM SOLICITATION NO.:

Instructions: Please acknowledge receipt of all addenda issued with this solicitation by completing this addendum acknowledgment form. Check the box next to each addendum received and sign below. Failure to acknowledge addenda may result in bid disqualification.

Acknowledgment: I hereby acknowledge receipt of the following addenda and have made the necessary revisions to my proposal, plans and/or specification, etc.

Addendum Numbers Received: (Check the box next to each addendum received)

[] Addendum No. 1	[] Addendum No. 6
[] Addendum No. 2	[] Addendum No. 7
[] Addendum No. 3	[] Addendum No. 8
[] Addendum No. 4	[] Addendum No. 9
[] Addendum No. 5	[] Addendum No. 10

I understand that failure to confirm the receipt of addenda may be cause for rejection of this bid. I further understand that any verbal representation made or assumed to be made during any oral discussion held between Vendor's representatives and any state personnel is not binding. Only the information issued in writing and added to the specifications by an official addendum is binding.

Company

Authorized Signature

Date

NOTE: This addendum acknowledgement should be submitted with the bid to expedite document processing.

SPECIFICATIONS

- 1. **PURPOSE AND SCOPE:** The West Virginia Purchasing Division is soliciting bids on behalf of West Virginia Department of Environmental Protection to establish an openend contract for an Environmental Risk Assessor to determine ecological and human health risks that may be associated with projects managed by the WVDEP.
- 2. **DEFINITIONS:** The terms listed below shall have the meanings assigned to them below. Additional definitions can be found in section 2 of the General Terms and Conditions.
 - 2.1 "Agency" means West Virginia Department of Environmental Protection (WVDEP).
 - **2.2** "Contract Item" or "Contract Items" means the list of items identified in Section 3.1 below and on the Pricing Pages.
 - **2.3** "Environmental Risk Assessor" means a person who evaluates the exposure of human and ecological receptors to contaminants in environmental media (i.e. soil, groundwater, air, sediments, and surface water) and determines the likelihood that such exposure would results in an adverse impact to the health of the receptor. Risk assessments are dependent upon mathematical constructs of interactions between living organisms and contaminants in their environment. Risk assessors must possess knowledge of toxicology, statistics, biology, and chemistry as well as the ability to apply computer models simulating contaminant behavior in environmental media and/or contamination uptake and distribution within a biological system. Risk assessors must also be able to perform complex calculations using appropriate environmental data and Agency-approved exposure parameters and to present the information in tabular form and figures according to OER's Voluntary Remediation Program Guidance Manual.
 - 2.4 "LRS" means Licensed Remediation Specialist
 - 2.5 "OER" means the Office of Environmental Remediation
 - **2.6 "Pricing Pages"** means the schedule of prices, estimated order quantity, and totals contained in wvOASIS and used to evaluate the Solicitation responses.
 - **2.7** "Solicitation" means the official notice of an opportunity to supply the State with goods or services that is published by the Purchasing Division.
 - 2.8 "TCAU" means the Tanks Corrective Action Unit.
 - **2.9** "VRP" means the Voluntary Remediation Program.

2.10 "WVDEP" means the West Virginia Department of Environmental Protection

3. GENERAL REQUIREMENTS:

3.1 Contract Items and Mandatory Requirements: Vendor shall provide Agency with the Contract Items listed below on an open-end and continuing basis. Contract Items must meet or exceed the mandatory requirements as shown below.

3.1.1 Background, Qualifications, Record Retention, Confidentiality, Testimony

3.1.1.1 Background: There are several sections within the WVDEP that use Risk Assessments within their Programs. The majority of the Risk Assessment work is related to the WVDEP Division of Land Restoration, Office of Environmental Remediation (OER), which oversees the Voluntary Remediation Program (VRP), UECA-LUST Program, Brownfields Assistance Program, and CERCLA Programs. The WVEP TCAU section also utilizes Risk Assessments.

Within these programs, human health and ecological risks are assessed by use of one or more levels of evaluation in order to determine suitability of these sites for reuse and the need for applying controls to mitigate remaining site risks. Guidance for WVDEP Risk Assessments can be found in OER's Voluntary Remediation Program Guidance Manual located on OER's website: <u>https://dep.wv.gov/dlr/oer/technicalguidanceandtemplates</u> /Documents/VRP%20Guidance%20Manual.pdf

The primary responsibility for providing an accurate assessment of site risks resides with the Licensed Remediation Specialist (LRS), who is retained by the property owner or interested party to oversee the site evaluation.

In addition, an Agency risk assessor/toxicologist is often consulted during the early stages of a site investigation to assist in developing a preliminary conceptual site model supported by an appropriate sampling and analysis plan. Currently, risk assessments are most often evaluated by the Agency's risk assessor/toxicologist, but the Agency may experience a temporary need for additional capacity in order to meet required review deadlines for risk assessment and related documents.

The Agency also requires a third-party contractor to review updates to the De Minimis Standards, as applicable:

https://dep.wv.gov/dlr/oer/technicalguidanceandtemplates /Documents/De%20Minimis%20and%20Relevant%20Be nchmarks.xlsx

- **3.1.1.2 Qualifications:** Vendor or Vendor's staff if requirements are inherently limited to individuals rather than corporate entities, shall have the following minimum qualifications:
 - **3.1.1.2.1** A doctoral degree in a relevant field of study from an accredited university and a minimum of three (3) years of relevant professional experience; *OR*
 - **3.1.1.2.2** A Master of Science degree in a relevant field of study from an accredited university and a minimum of five (5) years of relevant professional experience.
 - **3.1.1.2.3** Relevant professional experience must consist of work related directly to risk assessment, risk characterization, and risk management activities.
 - **3.1.1.2.4** At the discretion of the Vendor, an employee of the Vendor with knowledge in the applicable disciplines of toxicology, statistics, biology, and chemistry may conduct the review. The final report, however, must be prepared by, or under the direction of, an Environmental Risk Assessor.
 - **3.1.1.2.5** Compliance with experience requirements will be determined prior to contract award

by the State through references provided by the Vendor with its bid or upon request, through knowledge or documentation of the Vendor's past projects, or some other method that the State determines to be acceptable. Vendors should submit a current resume' which includes information regarding the number of years of qualification, experience and training, and relevant professional education for each individual that will be assigned to this project. Vendor must provide any documentation requested by the State to assist in confirmation of compliance with this provision. References, documentation, or other information to confirm compliance with this experience requirement are preferred with the bid submission; but may be requested prior to award.

3.1.1.2.6 An example risk assessment report or a risk assessment review prepared by the Vendor demonstrating evidence of relevant professional experience must also be provided prior to award. Submission of the sample document(s) may be in electronic format. Redaction of confidential information regarding site/client names on the sample documents is acceptable.

The WVDEP reserves the right to request and approve credentials of any person assigned to perform work under this contract.

- **3.1.1.3 Record Retention**: The Vendor shall maintain such records a minimum of five (5) years and make available all records to Agency personnel at the Vendor's location during normal business hours, 8:00AM to 5:00PM, upon written request by the Agency within ten (10) calendar days after receipt of the request.
- **3.1.1.4 Confidentiality:** The Vendor shall have access to private and confidential data maintained by the Agency to the

extent required for the Vendor to carry out the duties and responsibilities defined in this contract. Documents will be sent to the Vendor through a secured server. Failure to maintain confidentiality will result in cancellation of the contract.

The Vendor agrees to maintain confidentiality and security of the data made available and shall indemnify and hold harmless the State and Agency against any and all claims brought by any party attributed to actions of breach of confidentiality by the Vendor, subcontractors, or individuals permitted access by the Vendor.

3.1.1.5 Testimony: Should the Agency request additional assistance from the contractor for testimony in any state or federal court or before any board of other administrative body associated with a document prepared under this agreement, such assistance shall be considered to be within the scope of work for this contract and thus billed at the same hourly rate as the rest of the items in this contract. An estimated number of times this might occur is twice a year. Meetings/testimony would likely take place in Charleston, WV; however, other locations are possible.

4. CONTRACT AWARD:

- **4.1 Contract Award:** The Contract is intended to provide the Agency with a purchase price on all Contract Items. The Contract shall be awarded to the two (2) lowest bid Vendors that provide the Contract Items meeting the required specifications for the lowest overall TOTAL BID AMOUNT as shown on the commodity lines in wvoasis. Vendors must provide resumes for verification of qualifications with their bid. Selection will be based on the lowest qualified bids. However, if the Vendor has a conflict of interest on the job, the next Vendor will be selected to avoid the conflict of interest.
- **4.2 Pricing Pages:** Vendor should complete the Pricing Pages by bidding on the price per hour (x) multiplied by the Estimated Quantity of Hours needed (=) equals the extended cost. Vendor should complete the Pricing Pages in their entirety as failure to do so may result in Vendor's bids being disqualified.

The Pricing Pages contain a list of the Contract Items and estimated purchase volume. The estimated purchase volume for each item represents the

approximate volume of anticipated purchases only. No future use of the Contract or any individual item is guaranteed or implied.

Vendor should type or electronically enter the information into the Pricing Pages through wvOASIS, if available, or as an electronic document. Vendors can download the electronic copy of the Pricing Pages from the wvOASIS Vendor Self-Service (VSS) website. If responding with paper bid, Vendors should download and/or print the assembled CRFQ document (with the highest version number) from wvOASIS and insert their unit price and extended cost for each item.

5. ORDERING AND PAYMENT:

- **5.1 Ordering:** Vendor shall accept orders through wvOASIS, regular mail, facsimile, email, or any other written form of communication. Vendor may, but is not required to, accept on-line orders through a secure internet ordering portal/website. If Vendor has the ability to accept on-line orders, it should include in its response a brief description of how Agencies may utilize the on-line ordering system. Vendor shall ensure that its on-line ordering system is properly secured prior to processing Agency orders on-line.
 - **5.1.1 Work Directives:** Work will be ordered by issuance of a work Directive. The Work Directive will contain the location of the project site, the specific problem, the work to be performed, and the time frame during which the work must be completed.
 - **5.1.1.1** Provided there is no conflict of interest in review of a specific project, the Work Directive shall be awarded in the following manner:
 - **5.1.1.1.1** The Work Directive award will go to the first lowest successful Vendor.
 - **5.1.1.1.2** If the Vendor accepts the Work Directive, a work plan and cost proposal will be required from the Vendor as specified in the Work Directive. The Vendor will have five (5) working days to accept or refuse the project. The work plan/cost proposal will consist of a brief description of the work to be performed, the number of hours, and the total dollar amount it will cost to perform each task included in the Work Directive. This can be provided in a simple email. Vendors will not be reimbursed for providing the work plan/cost estimate.

- **5.1.1.1.3** If the Vendor refused the Work Directive, it will be offered to the second lowest successful Vendor and so on.
- **5.1.1.1.4** The Vendor's submitted work plan and cost estimate, containing the quantity estimates, shall be in accordance with the unit process provided in the response to this RFQ. If the work plan and cost estimate are approved, the WVDEP will issue a Notice to Proceed which will specify the cost of the project and the starting and ending dates. Deliverables will be submitted electronically.
- **5.1.1.1.5** The Vendor shall not begin work until a signed Notice to Proceed has been issued by the WVDEP.
- **5.2 Payment:** Vendor shall accept payment in accordance with the payment procedures of the State of West Virginia.
 - **5.2.1 Invoice:** A flat rate per hour will be the total charge to the state and will cover the full cost of all work hours including labor, travel, and materials. The Vendor will be contacted to provide Risk Assessor services on an "as needed" basis only. The Vendor will invoice the WVDEP on a monthly basis. All Invoices must be accompanied by a sworn statement detailing actual hours worked.

6. DELIVERY AND RETURN:

- **6.1 Delivery Time:** Vendor shall deliver standard orders as stated in the Work Directive. The Notice to Proceed will specify the starting and ending dates for each Work Directive. Deliverables shall be submitted electronically, unless a specific request is made.
- **6.2** Late Delivery: The Agency placing the order under this Contract must be notified in writing if orders will be delayed for any reason. Any delay in delivery that could cause harm to an Agency will be grounds for cancellation of the delayed order, and/or obtaining the items ordered from a third party.

Any Agency seeking to obtain items from a third party under this provision must first obtain approval of the Purchasing Division.

6.3 Delivery Payment/Risk of Loss: Standard order delivery shall be F.O.B. destination

to the Agency's location. Vendor shall include the cost of standard order delivery charges in its bid pricing/discount and is not permitted to charge the Agency separately for such delivery. The Agency will pay delivery charges on all emergency orders provided that Vendor invoices those delivery costs as a separate charge with the original freight bill attached to the invoice.

- **6.4 Return of Unacceptable Items:** If the Agency deems the Contract Items to be unacceptable, the Contract Items shall be returned to Vendor at Vendor's expense and with no restocking charge. Vendor shall either make arrangements for the return within five (5) days of being notified that items are unacceptable or permit the Agency to arrange for the return and reimburse Agency for delivery expenses. If the original packaging cannot be utilized for the return, Vendor will supply the Agency with appropriate return packaging upon request. All returns of unacceptable items shall be F.O.B. the Agency's location. The returned product shall either be replaced, or the Agency shall receive a full credit or refund for the purchase price, at the Agency's discretion.
- **6.5 Return Due to Agency Error**: Items ordered in error by the Agency will be returned for credit within 30 days of receipt, F.O.B. Vendor's location. Vendor shall not charge a restocking fee if returned products are in a resalable condition. Items shall be deemed to be in a resalable condition if they are unused and in the original packaging. Any restocking fee for items not in a resalable condition shall be the lower of the Vendor's customary restocking fee or 5% of the total invoiced value of the returned items.

7. VENDOR DEFAULT:

7.1 The following shall be considered a vendor default under this Contract.

- **7.1.1** Failure to provide Contract Items in accordance with the requirements contained herein.
- **7.1.2** Failure to comply with other specifications and requirements contained herein.
- **7.1.3** Failure to comply with any laws, rules, and ordinances applicable to the Contract Services provided under this Contract.
- 7.1.4 Failure to remedy deficient performance upon request.

- 7.2 The following remedies shall be available to Agency upon default.
 - **7.2.1** Immediate cancellation of the Contract.
 - **7.2.2** Immediate cancellation of one or more release orders issued under this Contract.
 - 7.2.3 Any other remedies available in law or equity.

8. MISCELLANEOUS:

- **8.1** No Substitutions: Vendor shall supply only Contract Items submitted in response to the Solicitation unless a contract modification is approved in accordance with the provisions contained in this Contract.
- **8.2 Vendor Supply:** Vendor must carry sufficient inventory of the Contract Items being offered to fulfill its obligations under this Contract. By signing its bid, Vendor certifies that it can supply the Contract Items contained in its bid response.
- **8.3 Reports:** Vendor shall provide quarterly reports and annual summaries to the Agency showing the Agency's items purchased, quantities of items purchased, and total dollar value of the items purchased. Vendor shall also provide reports, upon request, showing the items purchased during the term of this Contract, the quantity purchased for each of those items, and the total value of purchases for each of those items. Failure to supply such reports may be grounds for cancellation of this Contract.
- **8.4 Contract Manager:** During its performance of this Contract, Vendor must designate and maintain a primary contract manager responsible for overseeing Vendor's responsibilities under this Contract. The Contract manager must be available during normal business hours to address any customer service or other issues related to this Contract. Vendor should list its Contract manager and his or her contact information below.

Contract Manager:	isa Poppelreiter
Telephone Number:	412-377-5089
Fax Number:	
Email Address:	a.poppelreiter@worley.com

Tiona Todoruk, Ph.D., P.Chem.

Principal Environmental Scientist / Risk Assessment Specialist

Summary

Tiona is a principal environmental scientist with more than 20 years of experience in scoping and executing toxicology studies, permitting and contaminated lands risk assessment. She is the technical director of Worley's risk assessment practice and supports the global Worley business in this aspect, having completed projects on six continents. She has worked across a range of industries including in power generation, upstream and downstream oil and gas, waste management and infrastructure development to support permitting, contaminant management and overall site closure. She has supported numerous clients in the development of defensible risk-based benchmarks for metals, pesticides, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), hydrocarbons and a range of other parameters in soil, water, sediment, soil gas and air. She has also supported customers in WQBEL development, TBEL development and NPDES permitting in Canada, the United States and Europe.

Education

2003 Ph.D., Physical/Environmental Chemistry, University of Calgary, Alberta, Canada
2000 B.S., Chemistry, University of Northern British Columbia, Prince George, British Columbia, Canada

Experience

2005-Present Risk Assessment Specialist, Worley Consulting, United States

City of Edmonton, Technical Director, Development of Effluent Discharge Limits Using WQBELs for a Former Landfil, Edmonton, Alberta, Canada.

Oversight and senior technical support for development of effluent discharge limits for a former landfill in Edmonton, Alberta.

IPL, Technical Direction, Development of Microplastics Discharge Limits for Polypropylene Plant, Alberta, Canada.

Senior technical direction for development of a CSM and microplastics discharge limits into a regionally important river for a polypropylene plant in Alberta. The limits were toxicity based and incorporated practical limitations of treatment technologies for microplastics. Regulatory approval of the limits was achieved and an Approval to Operate was granted.

Water-link, Technical Director, Risk Analysis for Water Reuse Design Basis, Antwerp, Belgium.

Oversight and senior technical support for assessment of risks associated with water recycling / reuse and input into design basis to identify log reduction values for water treatment processes.

EPRI, Technical Specialist, Manual on WET Testing Methods for the Power Sector, United States

Technical specialist involved in development of a guidance manual for WET testing in the Power Sector.

Chevron, HSE Manager, Salt Lake Refinery Retrofit Project, Salt Lake City, Utah, USA

HSE Manager for Salt Lake Refinery Retrofit / Upgrade project. Responsible for HSE Strategy development and HSE behavior based safety program implementation for FEED, detailed design, construction and operations, permitting support including support on NPDES permit renewal to incorporate new contaminants associated with the Retrofit.

ASAP – Alaska Gas Development Corporation, HSE Support, Alaska, USA.

HSE support for FEED phase of ASAP project for grassroots development of gas processing facilities. Roles include identification of potential existing and future environmental issues, permitting support including NPDES permits, reviews of project documentation produced by technical specialists such as HSSE Management System, HSSE plans and philosophies, QRA, EIS and participation in workshops including HAZOP, SIL Assignment, SIMOPs and ISD.

Technical Reviewer | Step 5 DDW Evaluation | Los Angeles Department of Water and Power | San Fernando Basin, Los Angeles County, California.

Technical reviewer for updates to DDW Step 5 Evaluation for drinking water supply to confirm wellhead treatment of impacted groundwater was appropriate.

Exxon Mobill, Technical Director, Produced Water Study, Permian Basin, Conceptual Site Model and Ecological Risk Assessment, New Mexico and Texas, USA

Technical direction for development of conceptual site model and ecological risk assessment associated with produced water management within the Permian Basin.

SABIC, Technical Lead, EHSS and Risk, Saudi Arabia.

Development of EHSS study and project Risk Assessment including report and presentation development and workshop facilitation.

Ventura, Los Angeles, Technical Lead, HSE Evaluation and Risk Assessment, Southern California Edison – Various RO Water Treatment Systems, Orange and San Bernardino Counties, California, USA.

Development of technical document comparing treatment chemicals to allow for risk-based selection of treatment option.

LADWP, Technical Director, Owner's Engineer, Risk Assessment Services, San Fernando Valley Superfund Site, Los Angeles, California, USA.

Human health and ecological risk assessment services.

Technical Director | Portfolio Technical Director | ATCO | Alberta, Canada.

Technical director for the ATCO portfolio of sites including substations, distribution and transmission stations, pipelines, gas plants, leases and maintenance depots. Responsible for overall oversight to confirm the application of risk-based guidelines for remediation and to facilitate site closure.

Pieridae, Technical Director, Waterton 1 Risk Management Plan, Alberta, Canada

Technical director for risk management plan of operational well site with potential hydrocarbon discharge to a nearby creek assessed using sediment triad monitoring.

IOL, Technical Director, CSM and Problem Formulation Development, Kearl Oil Sands Mine, Alberta, Canada

Technical director for risk-based CSM development of Kearl Oil Sands Mine including consideration of geochemical processes associated with leaching from tailings pond and discharge of ARD impacted water to nearby sensitive aquatic receiving environments.

Keyera, Technical Director, Sulphur Risk Assessment and Management Plan for Strachan Gas Plant, Alberta, Canada

Technical director for site-specific sulphur risk assessment and risk management plan for former sulphur block area at a gas plant in Alberta.

Bayer, Technical Director, Development of RBCLs for DEET in Groundwater, Sao Paulo, Brazil.

Development of RBCLs for DEET plume in groundwater beneath a Bayer facility in Sao Paulo, Brazil.

OCP, Technical Director, Phosphate Mine Sites Wide Area Site-Specific Risk Assessment, Morocco.

Development of SSRA for metals, nutrients and radionuclides at five mines sites across a region in Morocco to assess potential risks to human health and bioaccumulation of parameters within the food chain including in marine organisms and livestock.

Heliogen, Technical Support, Permitting and Compliance Support for Solar Plant, California, USA

Permitting and compliance support for front end engineering design packages including containment basins, civil works and review of potential requirements for permitting discharges and emergency release from the Facility.

Pieridae, Technical Director, Liquid Sulphur Pipeline Spill Response and Risk Assessment, Alberta, Canada

Oversight and senior technical support for spill response and risk assessment of pipeline break in Alberta that discharged into a nearby fishbearing water course. Evaluation of acute toxicity through desktop assessment, effects monitoring and bioassays to confirm risks to aquatic life were negligible.

Braskem, Technical Director, Development of RBCLs for MDD Site, Brazil

Oversight and senior technical support for development of RBCLs for a former chlorinated solvent storage facility in Brazil.

IOL, Technical Director, Toxicity Study, Norman Wells, NWT, Canada

Senior technical support for toxicity study associated with hydrocarbons in Norman Wells.

IOL, Technical Director, Nitrate SSRO for Soils, Northwest Territories, Canada

Oversight and senior technical support for development of nitrate SSRO for soils to protect aquatic life.

City of New Westminster, Technical Director, Porewater Assessment and Detailed Ecological Risk Assessment, British Columbia, Canada

Oversight and senior technical support for desktop assessment of risks to evaluate if porewater sampling was required after a wharf fire adjacent to a Park in the Fraser River Estuary.

Wood Buffalo Regional Municipality, Site Specific Risk Assessment Work Plan, Former Salt Storage Site, Fort McMurray, Alberta, Canada

Development of technical work plan and risk management plan for regulatory approval documenting site specific risk assessment of the site including aquatic toxicity of a discharging salinity plume to make informed decisions about remediation and risk management and develop site specific remedial objectives.

Enel, Holding Pond Characterization, Colombia.

Support on development of a characterization program for odor, air emissions and water quality of a holding pond in support of treatment option development.

Memberships and affiliations

Professional Chemist, Association of the Chemical Profession of British Columbia, Canada Professional Chemist, Association of the Chemical Profession of Alberta, Canada Director, Science Advisory Board for Contaminated Sites of British Columbia

Publications and presentations

Available upon request

Warren Stein, MPH

Human Health and Ecological Risk Assessment

Summary

Warren is a senior environmental scientist in Edmonton's Decommissioning and Restoration Group. He has conducted human health and environmental risk assessments in Western Canada for over 30 years. He has a wealth of experience in all aspects in the field of risk assessment/risk management, including project design, conceptual site model development, exposure modelling, toxicity assessment, food web modelling, weight of evidence approach, bioaccumulation, site-specific remedial objective development, stakeholder engagement, and project management. Warren has experience with conducting risk assessments on both public and private lands.

Warren also has extensive experience in contaminated sites project management, where he has supervised numerous groundwater monitoring, environmental site assessment, remediation and spill response projects involving cost estimating, coordinating and supervising various levels of staff, subcontractor management, budget control, client and regulatory liaison, evaluation of analytical data, interpretation of environmental regulations, site-specific guideline development, and report preparation and/or review.

Education

2006	Masters of Public Health (Environmental Science [Specializing in human health risk assessment]), University of Alberta, Edmonton, AB,
1992	B. Ed. (Secondary Education), University of Alberta, Edmonton, AB, Canada
1990	B. Sc. (Mathematics / Biology), Concordia College, Edmonton, AB, Canada

Relevant Experience

1999-Present Sr. Environmental Scientist, Environmental Program Management, Worley Consulting

- Confidential Alberta Conduct a risk management plan and site-specific human health and ecological
 risk assessment for soil and groundwater impacts at a former well site. The site is located within the
 foothills of Alberta and lies on a native reserve. Tasks included review of available site investigation data,
 conceptual site model development, toxicity assessment, exposure assessment, risk characterization and
 development of risk management objectives. Contaminants of concern included salinity, petroleum
 hydrocarbons and metals. Work needed to meet both provincial and federal regulatory standards.
- ATCO Drumheller, AB Conduct a site-specific human health and ecological risk assessment for soil
 impacts at a former electrical substation. The site is located within the Town of Drumheller, Alberta, and
 lies adjacent to two residential properties and the Red Deer River valley. Tasks included review of
 available site investigation data, conceptual site model development, toxicity assessment, exposure
 assessment, risk characterization and development of site-specific remedial objectives. Contaminants of
 concern included sterilants, petroleum hydrocarbons and metals.
- ATCO High Prairie, AB Conduct a site-specific human health and ecological risk assessment for soil
 impacts at a former electrical substation. The site is located on the outskirts of the Town of High Prairie,

Alberta, and lies adjacent to an industrial facility and agricultural lands. Tasks included review of available site investigation data, conceptual site model development, toxicity assessment, exposure assessment, and risk characterization. Contaminants of concern included sterilants, chlorinated phenolics, petroleum hydrocarbons and polycyclic aromatic hydrocarbons.

- City of Edmonton Edmonton, AB Conduct an ecological risk assessment on the North Saskatchewan River with respect to contaminants in the outfall from Edmonton's Waste Management Facility. The project included the collection of samples for site-specific toxicity testing, review of toxicity data, and reporting.
- TELUS Northern Alberta Risk assessment specialist and senior technical reviewer for the TELUS Birch Mountain Remote Microwave Tower Site. Duties included evaluation of soil and groundwater analytical data, interpretation of environmental regulations, development of site-specific Tier 2 guidelines, technical support and senior review of the technical report.
- Pembina Pipeline Corporation Redwater Facility, Redwater, AB- Manage all environmental work at the facility, including compliance soil and groundwater monitoring, spill response, remediation, remedial system installation and operation, human health risk assessment, data analysis, reporting, and client and regulatory liaison.

1994 to 1999 Risk Assessment Specialist, Toxcon Inc., Edmonton, AB

Affiliations

- Numerous external courses and seminars on workplace safety, analytical sampling programs, contaminated sites management, database software, hydrogeology, risk assessment, risk management, and uncertainty.
- Numerous internal seminars on project management, workplace safety, contaminated site management, risk assessment, and risk management.

Technical expertise

- Risk Management
- Human Health Risk Assessment
- Subsoil Salinity Tool Certification
- Ecological Risk Assessment
- Project Management
- Public Safety Risk Assessment for Hazardous Materials